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Introduction

These are the lecture notes for MATH 118ABC - Real Analysis I-III, from the
2019-2020 school year taught by Denis Labutin and Gustavo Ponce. This
course covers the real number system, elements of set theory, continuity, dif-
ferentiability, Riemann integral, implicit function theorems, convergence pro-
cesses, and special topics.



Contents

Contents 3

1 Preliminaries 6
1.1 Construction of R . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Sequences and Series . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Topology of R 15
2.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Further Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Differentiation 21
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Derivative Theorems . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Differentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Riemann Integration 31
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 More on Riemann Integral . . . . . . . . . . . . . . . . . . . . . 32
4.3 Integral Properties/Theorems . . . . . . . . . . . . . . . . . . . 36
4.4 Discontinuous Functions . . . . . . . . . . . . . . . . . . . . . . 37
4.5 Change of Variables and Taylor Polynomials . . . . . . . . . . . 39
4.6 Generalizations of Riemann Integral . . . . . . . . . . . . . . . 41

5 Series 45
5.1 Convergence Tests . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Special Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Elementary Functions 51
6.1 Exponential/Logarithm Function . . . . . . . . . . . . . . . . . 51
6.2 Sine and Cosine . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3 Factorial Function . . . . . . . . . . . . . . . . . . . . . . . . . . 53



CONTENTS 4

7 Sequences of Functions 56
7.1 Pointwise Convergence . . . . . . . . . . . . . . . . . . . . . . . 56
7.2 Uniform Convergence . . . . . . . . . . . . . . . . . . . . . . . . 58
7.3 Properties of Uniform Convergence . . . . . . . . . . . . . . . . 59
7.4 Weierstrass Approximation Theorem . . . . . . . . . . . . . . . 66

8 Analytic Functions 69
8.1 Analyticity and Properties . . . . . . . . . . . . . . . . . . . . . 70
8.2 Analyticity Criterion . . . . . . . . . . . . . . . . . . . . . . . . 72
8.3 Asymptotic Analysis . . . . . . . . . . . . . . . . . . . . . . . . 74
8.4 Applications of Asymptotics . . . . . . . . . . . . . . . . . . . . 77

9 Analysis in Metric Spaces 81
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
9.2 Metric and Normed Spaces . . . . . . . . . . . . . . . . . . . . . 81
9.3 Sequences in Metric Spaces . . . . . . . . . . . . . . . . . . . . . 84
9.4 Compact Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . 86

10 Differentiability in R
n 89

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
10.2 Multivariable Derivative Theorems . . . . . . . . . . . . . . . . 92
10.3 Prelude to Differential Geometry . . . . . . . . . . . . . . . . . 92

11 Multivariate Integration 93

12 Fourier Analysis 94

13 Measure Theory 95
13.1 Outer Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
13.2 Measurability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
13.3 General Measures . . . . . . . . . . . . . . . . . . . . . . . . . . 106
13.4 Lebesgue Measure . . . . . . . . . . . . . . . . . . . . . . . . . . 109
13.5 Convergence of Measurable Functions . . . . . . . . . . . . . . 113

14 Lebesgue Integration 118
14.1 Integration with Respect to a Measure . . . . . . . . . . . . . . 118
14.2 Properties of Lebesgue Integral . . . . . . . . . . . . . . . . . . 123
14.3 Limit Integral Theorems . . . . . . . . . . . . . . . . . . . . . . 126
14.4 Uniform Integrability . . . . . . . . . . . . . . . . . . . . . . . . 133

15 Measure-Theoretic Differentiation 134
15.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
15.2 Derivatives of Integrals . . . . . . . . . . . . . . . . . . . . . . . 136



CONTENTS 5

16 Intro to Functional Analysis 140
16.1 Banach Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140



1Preliminaries

We review a few concepts from 117 and cover some things more in depth.

1.1 Construction of R

Recall that the real numbers, which we denote R, are an ordered field such
that Q ⊂R and the Axiom of Completeness holds.

Definition 1 (Dense Set). A set E ⊂ R is dense in R if given any two real
numbers a < b, it is possible to find a point x ∈ E such that a < x < b.

Theorem 1 (Nested Segments Principle). Let [a1,b1] ⊃ [a2,b2] ⊃ · · · ⊃ [an,bn] ⊃
· · · , and let In = [an,bn], for an,bn ∈R, ∀n. Then

∞⋃
n=1

In , ∅.

This requires closed intervals, because if we take In = (0, 1
n ), then

⋃∞
n=1 In = ∅,

and it also requries bounded intervals, because if we take En = [n,∞), then⋃∞
n=1En = ∅ as well.

Proof. Define L = {an | n ∈N}. Nested implies that bk is an upper bound for L.
Thus there exists supL = m and m ≤ bk , for all k. Let R = {bk | k ∈N} that has
m has its lower bound. This means infR =M ∈R, and m ≤M. Hence for all n,
an ≤m ≤M ≤ bn implies that for all n,

∞⋃
n=1

[an,bn] ⊃ [m,M],

where possibly m =M. If this is the case, then [m,M] =m, but either way, it is
not equal to the empty set.

In contrast to the Axiom of Completeness, we can construct the real num-
bers in a different way.



CHAPTER 1. PRELIMINARIES 7

Definition 2 (Dedekind Cut). A subsetA of the rational numbers is called
a Dedekind cut, or just simply cut, if it has the three properties:

(a) A is nonempty and A ,Q,

(b) If r ∈ A, then A contains every rational q < r,

(c) A does not have a maximum; if r ∈ A, then there exists s ∈ A such
that r < s.

Suppose r ∈Q and we let A = {t ∈Q | t < r}. Is A a cut?

(a) Clearly, A ,Q and A is nonempty.

(b) If t1 ∈ A, then r > t1 > t2 ∈Q, so t2 ∈ A.

(c) Since r < A, by the density of Q, there always exists t2 ∈ A for all t1 ∈ A,
so A does not have a maximum.

Hence A is a cut. Be careful, however, as not every cut is of this form. The set
B = {t ∈Q : t ≤ 2} is NOT a cut, as it does have a maximum.

Definition 3 (Real Numbers R). We define the real numbers R to be the
set of all cuts in Q.

We want to rigorously define algebraic operations in R using this idea of cuts.

Definition 4 (Addition). Given A and B in R, define

A+B = {a+ b | a ∈ A, and b ∈ B}.

Is A+B a cut? We check our three conditions once again:

(a) Clearly A + B is nonempty. To show A + B , Q, since A , Q and B , Q,
there exists r < A and s < B. For all a ∈ A, we have r > a and for all b ∈ B,
we have s > b. This gives us r + s > a + b for all a + b ∈ A + B, and in
particular, there exists r + s < A+B. Thus A+B ,Q.

(b) Let a+b ∈ A+B be arbitrary and let s ∈Q satisfy s < a+b. Then s−b < a,
and so s − b ∈ A because A is a cut. But then

s = (s − b) + b ∈ A+B,

and so this property is satisfied.
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(c) Suppose A+B has a maximum. Then max(A+B) = r + s for some r ∈ A
and s ∈ B. Since A and B have no maximum, there exists r ′ ∈ A and
s′ ∈ B such that r ′ > r and s′ > s. This gives r + s < r ′ + s′ ∈ A + B, which
contradicts the fact that r + s is the maximum.

It is easy to show that the ordered field axioms are satisfied by addition as
well, and thus we can see that addition is indeed well-defined in our con-
struction of R. We also want an identity element; that is, some element where
A+O = A is satisfied. This will be

O = {p ∈Q | p < 0}.

We want to be able to satisfy the inverse property as well, which is that A +
(−A) =O. How would we define −A?

Definition 5 (Additive Inverse). Given A ∈R, define

−A = {r ∈Q | ∃t < A with t < −r}.

It is not hard to show that −A is indeed a cut. Finally, we can formally define
multiplication.

Definition 6 (Multiplication). Given A ≥ O and B ≥ O, define the prod-
uct

AB = {ab | a ∈ A,b ∈ B, where a,b ≥ 0} ∪ {q ∈Q | q < 0}.

Again, showing that this is a cut is a mere formality:

(a) Clearly AB , ∅ because {q ∈ Q | q < 0} , ∅, and AB , Q since both A and
B are not equal to Q.

(b) If t ∈ AB and r ∈ Q such that 0 < r < t, then t = ab for some a ∈ A and
b ∈ B. Since (r/a)a < ab and r/a < b, we have r = (r/a)a ∈ AB.

(c) If t < 0 is an element of AB, then by the density of the rationals, there
always exists r > t such that r < 0. If t > 0 then t = ab for some a ∈ A
and b ∈ B, where a,b > 0. Because A and B are cuts, there exists a < c ∈ A
and b < d ∈ B such that t < cd ∈ AB. Hence AB does not have a maximal
element.

1.2 Sequences and Series

In this section, we review the concept of sequences.
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Definition 7 (Sequence). A sequence is any f : N→ R, where n 7→ f (n) =
fn.

We can study the "end behavior" or "long-term behavior" of a sequence by
looking at its convergence.

Definition 8 (Convergence). We say that a sequence an converges to L ∈R
if

∀ε > 0, ∃N ∈N such that ∀n ≥N, |an −L| < ε.

We usually denote this as either an→ L or

lim
n→∞

an = L.

Definition 9 (Infinity). Let E be a set. If E is not bounded above (and
consequently, M ∈ R is not an upper bound of E, for all M), then we
define the supremum of E to be infinity:

supE =∞.

Similarly, if E is not bounded below, then we define the infimum of E to
be negative infinity:

infE = −∞.

How to we prove prove convergence? There are a couple of ways to do this.

(1) Calculus convergence lemmas. If ∃L1,L2 ∈ R, where an → L1 and bn →
L2, then the following are true:

• c1an + c2bn→ c1L1 + c2L2,

• anbn→ L1L2,

• Provided L2 , 0, then an
bn
→ L1

L2
.

(2) Squeeze Theorem. If both an,bn→ L, for L ∈ R or ±∞, and an ≤ cn ≤ bn,
for all n, then cn→ L.

(3) Monotonic sequences. Recall that a sequence an is monotonic increasing
if an ≤ an+1, ∀n. If this is true, then

lim
n→∞

an = sup{an | n ∈N} = L ∈R or∞.

This leads us to an important theorem:



CHAPTER 1. PRELIMINARIES 10

Theorem 2 (Monotone Convergence Theorem). If an is a monotonic and
bounded sequence, then an converges.

Example 1. Let a > 1. Let xn = n
an . Find the limit of xn.

Proof. First we can see that

xn+1

xn
=
n+ 1
an+1 ·

an

n
=

(
1 +

1
n

)
· 1
a

=⇒ xn+1 =
1
a

(
1 +

1
n

)
xn.

Letting n→∞ on both sides, we get L = 1
a · L, and then because a > 1, we can

see that L = 0. However, this only proves that if the limit exists, then L = 0.
We need to show that the limit exists. Then for fixed δ > 0,

xn+1

xn
=

(
1 +

1
n

)
(1− δ), ∀n

Then we find N0 such that 1
n < δ for all n ≥N0. So for all n ≥N0,

xn+1

xn
≤ (1 + δ)(1− δ) = 1− δ2 < 1.

Thus for all n ≥N0, we have xn+1
xn
≤ 1, so xn+1 ≤ xn, so xN0

≥ xN0+1 ≥ xN0+2 ≥ · · · .
Hence our sequence is monotonic decreasing and 0 ≤ xn∀n. Thus our limit
exists, and L ≥ 0.

Definition 10 (Divergence to ±∞). We say that a sequence an diverges to
±∞ if

∀T ∈R, ∃N ∈N such that n ≥N =⇒ an ≥ T (an ≤ T ).

Consequently, we say simply say that a sequence diverges if it doesn’t converge
and doesn’t diverge to ±∞.

Definition 11 (Subsequence). We say that bn is a subsequence of a se-
quence an iff ∃σ : N→N such that σ (n) < σ (n+ 1) for all n and

bn = aσ (n).

Subsequences are very useful in determining if an diverges. This is because

an→ L =⇒ bn→ L for all subsequences bn of an.

Theorem 3 (Bolzano-Weierstrass Theorem). If an is a sequence such that ∃M
where |an| ≤ M for all n, then there exists bn = amn , a subsequence such that
amn → L.
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Definition 12 (Series). Let an be a sequence. We say that the series con-
verges; that is,

∞∑
n=1

an = L ∈R,

if the sequence sn = a1 + · · ·+an satisfies sn→ L. If Sn→∞, then the series
diverges to∞.

The easiest series so to speak are those with
∑∞
n=1 an where an ≥ 0 for all n.

This is because S1 ≤ · · ·Sn ≤ Sn+1 ≤ · · · . Then the series converges if and only if
∃M <∞ such that Sn ≤M for all n.

Definition 13 (Limit Superior/Inferior). Let an be a sequence. Define a
new sequence a+

N by
a+
N = supan≥N .

Then we define the limit superior of an as

limsup
n→∞

an = infa+
N .

Similarly, we can define another new sequence a−N by

a−N = infan≥N .

Then we define the limit inferior of an as

liminf
n→∞

an = supa−N .

In other words, the limit superior is the largest limit point, while the limit
inferior is the smallest limit point.

1.3 Continuity

Definition 14 (Convergence of a Function). We say that a function f :
(a,b)→R converges to limit L ∈R at p iff

∀ε > 0, ∃δ > 0 : if |x − p| < δ, then |f (x)−L| < ε.

This is denoted
lim
x→p

f (x) = L.

There exists an equivalent formulation of this definition in terms of sequences:
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Definition 15 (Sequential Convergence of a Function). We say that a
function f : (a,b)→R converges to limit L ∈R at p iff

∀xn such that xn→ p with xn , p, f (xn)→ L, ∀n.

Definition 16 (Continuity). We say that a function f is continuous at p if

lim
x→p

f (x) = f (p).

In particular, this is equivalent to saying

∀ε > 0, ∃δ > 0 such that if |x − p| < δ, then |f (x)− f (p)| < ε.

Some properties of continuous functions:

• If f is continuous at 0, and f (0) < 0, then ∃δ > 0 such that f (x) < 0, for
all x ∈ [−δ,δ].

• f , g continuous at p implies that f + g, f g, and f
g are all continuous at p

(assuming g , 0).

Theorem 4. If f is a continuous function, then for all xn such that xn→ p, we
have that f (xn)→ f (p). In particular, this means that |f (xn)− f (p)| → 0.

As a consequence of this, this means that f is not continuous at p if there
exists some xn such that xn→ p but f (xn) 6→ f (p).

Definition 17 (C0−Class). Let E be any open/closed/combination inter-
val. Then we say that f ∈ C(E), the C0−class of functions iff f is continu-
ous at every p ∈ E.

Theorem 5 (Intermediate Value Theorem). Let f ∈ C([a,b]), where a,b ∈ R,
and f (a) < f (b). Then for all L with f (a) ≤ L ≤ f (b), there exists c ∈ [a,b] such
that f (c) = L.

Proof. Suppose L = 0 and f (a) ≤ 0 ≤ f (b). If f (a) = 0 or f (b) = 0, then we’re
done. Otherwise, f (a) < 0 < f (b), and we define I1 = [a,b]. Then if f ( a+b2 ) = 0,
we’re done again. But if f ( a+b2 ) > 0, then I2 will be the left-side of the interval,
and if f ( a+b2 ) < 0, then I3 will be the right-side of the interval. Thus

In = [an,bn].
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If I1 ⊃ I2 ⊃ · · · ⊃ In has solution, then we’re done. Otherwise, the length will
be

`(In) =
|b − a|

2n
· 2, f (an) < 0, f (bn) > 0.

By the Nested Segments Principle,
⋃∞
n=1 In = {x∗}. Thus an → x∗ and bn → x∗,

and because a ≤ an ≤ bn and a ≤ b ≤ bn, it follows that a ≤ x∗ ≤ b, and so
x∗ ∈ [a,b]. Thus, f is continuous at x∗. Finally,

f (an) > 0, an→ x∗ =⇒ f (an)→ f (x∗) ≤ 0, ∀n,

f (bn) < 0, bn→ x∗ =⇒ f (bn)→ f (x∗) ≥ 0, ∀n.

Hence we conclude that f (x∗) = 0.
If L , 0, then consider a new function g(x) − f (x) − L. Then g(a) ≤ 0 and

g(b) ≥ 0. We apply Case 1, and so g(x∗) = 0⇐⇒ f (x∗) = L.

In general, the δ that we pick will depend on f , ε, and x. If we want to get rid
of this requirement, then we must introduce a new concept.

Definition 18 (Uniform Continuity). We say that a function f : E→R is
uniformly continuous on E iff

∀ε > 0, ∃δ > 0 such that if ∀x,y ∈ E, |x − y| < δ, then |f (x)− f (y)| < ε.

We we fix x, then limy→x f (y) = f (x), and so f is continuous at y. Thus f
being uniformly continuous will always imply that f is continuous. Much like
with continuity, there exists an equivalent sequential formulation of uniform
continuity.

Definition 19 (Sequential Uniform Continuity). If f is uniformly contin-
uous on E, then

∀xn, yn ∈ E, if |xn − yn| → 0, then |f (xn)− f (yn)| → 0.

Top rove that a function is not uniformly continuous, we can negate this defi-
nition to get that f is not unifomly continuous on E if

∃ε0 > 0, ∃xn, yn ∈ E such that |xn − yn| → 0 and |f (xn)− f (yn)| → 0.

Example 2. Let E = (0,1) and f (x) = 1
x ∈ C((0,1)). If f uniformly continuous

on E?
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Proof. No. Take ε0 = 1. Let un = 1
n , and we want vn to be defined by 1

un
− 1
vn

= 1.

Solving for vn, we get vn = 1
n−1 . Then

|un − vn| =
∣∣∣∣∣1n − 1

n− 1

∣∣∣∣∣ ≤ ∣∣∣∣∣1n
∣∣∣∣∣+

∣∣∣∣∣ 1
n− 1

∣∣∣∣∣→ 0,

but

|f (un)− f (vn)| =
∣∣∣∣∣ 1
un
− 1
vn

∣∣∣∣∣ = |n− (n− 1)| = 1 ≥ 1.

Thus |f (xn)− f (yn)| ≥ ε0.

Theorem 6. Let a,b ∈ R, and f ∈ C([a,b]). Then f is uniformly continuous on
[a,b].

Proof. Suppose to the contrary that f is not uniformly continuous on [a,b].
Then there exists ε0 > 0 and xn, yn such that |xn−yn| → 0 but |f (xn)−f (yn)| ≥ ε0.
Then because xn is bounded, we find nk , a subsequence defined by nk = xnk ,
where nk → p. Then

a ≤ nk ≤ b =⇒ a ≤ p ≤ b =⇒ p ∈ [a,b] =⇒ f (nk)→ f (p).

We take mk = ymk , |nk −mk | → 0. Thus mk → p because

|mk − p| = |mk +nk −nk − p| ≤ |mk −nk |+ |nk − p| → 0.

Hence f (mK )→ f (p), and it follows that

|f (nk)− f (mk)| = |f (nk)− f (p)+ f (p)− f (mk)| ≤ |f (nk)− f (p)|+ |f (p)− f (mk)| → 0.

But |f (nk)− f (mk)| ≥ ε0 > 0, a contradiction.



2Topology of R

2.1 Basic Definitions

Definition 20 (Neighborhood). Let ε > 0, and x ∈R. The neighborhood of
x is defined by

Vε(x) = (x − ε,x+ ε) = {z : |z − x| < ε}.

Using this definition, we can rewrite a few definitions:

• xn→ p if and only if ∀ε > 0, ∃N such that if n ≥N , then xn ∈ Vε(p).

• f is continuous at p if and only if ∀ε > 0, ∃δ such that f (vδ(p)) ⊂ Vε(f (p)).

Definition 21 (Open Set). A set E ⊂R is open iff for all x ∈ E, there exists
ε > 0 such that Vε(x) ⊂ E.

For example, the set (a,b), for a,b ∈R is open, because we let x0 ∈ (a,b) and

ε =
1
2

min{|a− x0|, |b − x0|}.

Then Vε(x) ⊂ E. However, the set (0,1] is not open because for x0 = 1, we have
that ∀ε > 0, Vε(1) 1 E, because 1 + ε

10 ∈ Vε(1) but 1 + ε
10 < (0,1].

Definition 22 (Interior Point). Let E ⊂ R. A point p is an interior point of
E iff there exists ε0 > 0 such that Vε0

(p) ⊂ E. We define

int(E) = {p | p is an interior point of E}.

If E is open, then int(E) = E.

Definition 23 (Closed Set). A set E ⊂R is closed iff the complement, Ec =
R \E, is open.
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Open and closed do not form a partition of the reals; for example the set (0,1]
is not open nor closed. How do unions and intersections affect open/closed
sets?

Theorem 7. (a) If Ei ⊂R is open for all i ∈ I , then
⋃
i∈I Ei is open.

(b) If E1, . . . ,EN are open for N <∞, then
⋂N
i=1Ei is open.

(c) If Ei ⊂R is closed for all i ∈ I , then
⋂
i∈I Ei is closed.

(d) If E1, . . . ,EN are closed for N <∞, then
⋃N
i=1Ei is closed.

Proof. Note that (a) =⇒ (c) and (b) =⇒ (d) because of DeMorgan’s Laws.

(a) Take any x0 ∈
⋃
i∈I Ei . Then x0 ∈ Ei0 for some i0 ∈ I . Then

∃ε > 0 : Vε(x0) ⊂ Ei0 =⇒ Vε(X0) ⊂
⋃
i∈I
Ei .

(b) Take any x0 ∈
⋃N
i=1Ei . Then x0 ∈ E1, x0 ∈ E2, · · · , x0 ∈ EN . The assump-

tion is that

∃ε1 > 0 : Vε1
(x0) ⊂ E1, ∃ε2 > 0 : Vε2

(x0) ⊂ E2, . . . ,∃εN > 0 : VεN (x0) ⊂ EN .

If we take Vε = min{ε1, . . . ,εN }, then

vε(x0) ∈ En, ∀n ∈ [1,N ].

Note that (b) and (d) require N to be finite, because if we let En = (− 1
n ,1 + 1

n ),
which is open for all n, we find that

∞⋂
i=1

Ei = [0,1],

which is obviously not open.

Definition 24 (Isolated Point). Let E ⊂R. A point p is an isolated point of
E iff p ∈ E and there exists ε > 0 such that Vε(p)∩E = p.

For example, if we take the set E = {1, 1
2 ,

1
3 , . . . ,

1
n , . . . }, every point is an isolated

point.
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Definition 25 (Limit Point). Let E ⊂ R. A point p is a limit point of E iff
there exists xn such that

• xn ∈ E, for all n,

• xn , p, for all n,

• limn→∞ xn = p.

Note that if p is an isolated point of E, then p is not a limit point of E, and
vice versa. Note also that a limit point can be contained in E, but it does not
necessarily have to be in E.

Definition 26 (Closure). Let E ⊂R. The closure of E is defined as

E = E ∪ {p | p is a limit point of E}.

Theorem 8. A set E ⊂ R is closed iff E contains all of its limit points. In
particular, if E = E.

Proof. (=⇒): Assume R \E is open. Take any limit point of E, say p. Suppose
p < E. Then p ∈R\E, and so there exists ε0 > 0 such that Vε0

(p)∩E = ∅. This is
a contradiction, because we can find xn such that xn ∈ E for all n and xn→ p.
(⇐=): Suppose E is not closed. Then R \ E is not open, and so some point
p ∈ R \ E is not an interior point of R \ E. This means for all ε > 0, Vε(P ) 1
R \ E, and so Vε(p)∩ E , ∅. Then there exists xε ∈ Vε(p)∩ E, with xε , p. So
ε = 1, 1

2 , . . . ,
1
n . It follwos that we have xn such that xn ∈ E for all n, xn , p for

all n, and xn ∈ V1/n(p). Thus

0 ≤ |xn − p| ≤
1
n
.

By the Squeeze Theorem, xn→ p, so p is a limit point of E. By our assumption,
p ∈ E, a contradiction for the choice of p.

Definition 27 (Boundary Point). Let E ⊂R. We say a point p is a boundary
point iff for all ε > 0, Vε(x) ∩ E , ∅ and Vε(x) ∩ Ec , ∅. The set of all
boundary points of E is denoted ∂E or bd(E).

Definition 28 (Perfect Set). A set P ⊂ R is perfect if it is closed and con-
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tains no isolated points.

As it turns out, any nonempty perfect set is uncountable.

Definition 29 (Connected Set). Two nonempty sets A,B ⊂R are separated
if A∩B and A∩B are both empty. A set E ⊂ R is disconnected if it can be
written as E = A∪B, where A and B are nonempty separated sets. A set
that is not disconnected is called a connected set.

Theorem 9. A set E ⊂R is connected if and only if

(a) For all disjoint sets A and B satisfying E = A∪ B, there always exists a
convergent sequence xn→ x with xn contained in one of A or B, and x is
an element of the other.

(b) Whenever a < c < b for a,b ∈ E, it follows that c ∈ E as well.

2.2 Compactness

Definition 30 (Open Cover). Let E ⊂ R. An open cover of E is any collec-
tion of sets C = {Oα}α∈A such that

• Oα ⊂R is open, for all α ∈ A,

•
⋃
α∈AOα ⊃ E.

Some examples and nonexamples of open covers:

• The collection C1 = {(q − 1,q + 1)}q∈Q is an open cover of R, because for
all r ∈R, ∃q ∈Q such that r ∈ (q − 1,q + 1) because of the density of Q in
R.

• The collection C2 = {(x − 1), (x + 1)}x∈R is an open cover of R because for
all r ∈ R, we take x = r. Then r ∈ (x − 1,x + 1), so C2 is indeed an open
cover.

• For the set E = [0,1], the collection C3 =
{
( 1
n ,2)

}
n∈N

is not an open cover

of E, because for all n ∈N, 0 < ( 1
n ,2).
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Theorem 10 (Heine-Borel). Let K ⊂R. Then the following are equivalent:

(1) For all open covers C of K , there exists a finite subcover. That is, there
exists

C′ = {Oα1
,Oα2

, . . . ,OαN }, αj ∈ A, N <∞,
N⋃
i=1

Oαi ⊃ K.

(2) K is closed and bounded.

(3) For all xn such that xn ∈ K , we can find a subsequence yk = xnk such that

lim
k→∞

yk = a,

for some a ∈ K .

(4) K is compact.

Theorem 11. If K ⊂R is compact, then C(K) is a vector space.

Theorem 12. Let K ⊂R be compact. Then for all f ∈ C(K),

sup
k
f = max

k
f = f (x1), for some x1 ∈ K

inf
k
f = min

k
f = f (x2), for some x2 ∈ K

Proof. Let M = supk f , where M ∈ R ∪ {∞}. Then there exists xn such that
xn ∈ K and m− 1

n ≤ f (xn) ≤M, if M <∞, or f (xn) ≥ n if M =∞. Compactness
tells us that there exists xnk such that xnk → a ∈ K . Thus f (xnk )→ f (a), so the
second case is impossible, and M = f (a).

2.3 Further Topics

Definition 31 (Fσ/Gδ Set). A set A ⊂ R is called an Fσ set if it can be
written as the countable union of closed sets. A set B ⊂ R is called a Gδ
set if it can be written as a countable intersection of open sets.

Obviously, a set A is a Gδ set if and only if its complement is an Fσ set. The
set [a,b] is a Gδ set because we can write it as

[a,b] =
∞⋂
n=1

(
a− 1

n
,b+

1
n

)
.

Example 3. Show that Q is an Fσ set and that I = R \Q is a Gδ set.
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Proof. We can write Q as
Q =

⋂
q∈Q
{q}.

Since {q} is closed, and Q is countable, we can see that Q is a Fσ set. Then by
DeMorgan’s Law,

I = R \Q =

⋂
q∈Q
{q}


c

=
⋃
q∈Q

R \ {q},

and because R \ {q} is open, R \Q is a Gδ set.

Theorem 13. If {G1,G2, . . . } is a countable collection of open and dense sets,
then the intersection

⋂∞
n=1Gn is not empty.

Recall that a set G is dense in R if and only if G = R. We have a related
definition.

Definition 32 (Nowhere-Dense Set). A set E is nowhere-dense if E con-
tains no nonempty open intervals.

Theorem 14. A set E is nowhere-dense if and only if the complement of E is
dense in R.

Proof. (=⇒) : Suppose E is nowhere-dense. Then we choose a,b ∈ R with a <
b. There exists Vε(x) ⊆ (a,b). Since E by assumption does not contain any
nonempty open intervals, Vε(x)∩Ec , ∅, so we choose any y ∈ Vε(x)∩Ec, and
we find a < y < b where y ∈ Ec. Hence E

c
is dense in R.

(⇐=) : Suppose E
c

is dense in R. Then for any a,b ∈ R and a < b, there exists
y ∈ Ec such that a < y < b. So for any open interval (a,b)∩ Ec , ∅. This shows
that (a,b) cannot be contained in E, so E is nowhere-dense.

Theorem 15 (Baire’s Theorem). The set of real numbers R cannot be written
as the countable union of nowhere-dense sets.



3Differentiation

3.1 Introduction

There are two related but distinct definitions for derivatives. The first defini-
tion is only really useful in one dimension.

Definition 33 (Derivative). Let f : (a,b)→R, with x0 ∈ (a,b). The deriva-
tive of f at x0 is defined as

f ′(x0) = lim
∆x→0

f (x0 +∆x)− f (x0)
∆x

= lim
x→x0

f (x)− f (x0)
x − x0

.

Definition 34 (Differentiability). Let f : (a,b)→ R, with x0 ∈ (a,b). Then
f is differentiable at x0 iff there exists A ∈R such that for all ∆x,

f (x0 +∆x) = f (x0) +A∆x+ r(∆x),
|r(∆x)
∆x

→ 0, as ∆x→ 0.

This means that r(∆x) tends to 0 faster than any linear function. For example,
r(∆x) = (∆x)2 or r(∆x) = |∆x|1+α for α > 0 are fine, but r(∆x) = ∆x

10000 is not fine.

Theorem 16. Let f : (a,b)→R, and x0 ∈ (a,b). Then

(1) ∃f ′(x0) ∈R⇐⇒ f is differentiable at x0.

(2) A = f ′(x0) in the definition.

Proof. (=⇒) : We have

f (x0 +∆x)− f (x0)
∆x

− f ′(x0) = α(∆)→ 0, as ∆x→ 0

=⇒ ∀∆x, f (x0 +∆x)− f (x0) = f ′(x0)∆x+∆xα(∆x)

=⇒ f (x0 +∆x)− f (x0) = A∆x+ r(∆x).
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Then
|r(∆x)|
∆x

=
|∆xα|
|∆x|

= |α(∆x)| → 0.

(⇐=) : Suppose f is differentiable at x0. Then ∀∆x , 0, f (x0 + ∆x) = f (x0) +
A∆x+ r(∆x). Then

=⇒
f (x0) +∆x)− f (x0)

∆x
= A+

r(∆x)
∆x

=⇒ lim
∆x→0

f (x0 +∆x)− f (x0)
∆x

= A · lim
∆x→0

r(∆x)
∆x

= f ′(x0).

When we compare the definitions of continuity and differentiability, we can
see that they are quite similar:

• Continuity:

∀∆x : f (x0+∆x) = f (x0)+f (x0+∆x)−f (x0) = f (x0)+ρ(∆x), lim
∆x→0

ρ(∆x) = 0.

• Differentiability:

∀∆x : ρ(x0 +∆x) = f (x0) + f ′(x0)∆x+ r(∆x), lim
∆x→0

|r(∆x)|
∆x

= 0.

As a direct corollary,

Theorem 17. If f : (a,b)→R is differentiable at x0 ∈ (a,b) then f is continuous
at x0. The converse is false in general.

Definition 35 (Sequential Derivative). If f ′(x0) exists, then

∀xn such that xn , x0, we have f ′(x0) = lim
n→∞

f (xn)− f (x0)
xn − x0

.

We can use this to prove that f (x) = |x| is not differentiable at x = 0. Take
xn = 1

n and yn = − 1
n . Then

f ′(0) = lim
n→∞

1/n
1/n

= 1, f ′(0) = lim
n→∞

| − 1/n|
−1/n

= −1.

Since the limits are not equal, f is not differentiable at x = 0.



CHAPTER 3. DIFFERENTIATION 23

3.2 Derivative Theorems

Theorem 18 (First Derivative Test). Let f : (a,b)→ R. Let x∗ : f (x∗) ≥ f (x), for
all x ∈ (a,b). Say that f ′(x∗) exists. Then f ′(x∗) = 0.

Proof. We know that

lim
∆x→0

f (x∗ +∆x)− f (x∗)
∆x

exists and is finite. Thus for all xn such that ∆xn , 0 for all n, ∆x→ 0. So

f ′(x∗) = lim
n→∞

f (x∗ +∆xn)− f (x∗)
∆xn

.

Consider ∆xn where ∆xn > 0 and ∆x̃n where ∆xn < 0. Therefore f ′(x∗) = 0.

Theorem 19 (Mean-Value Theorem). Let a,b ∈R, f ∈ C([a,b]), and f ′(x) exists
for all x ∈ (a,b). Then there exists some x0 with a < x0 < b where

f (b)− f (a)
b − a

= f ′(x0).

Proof. Let

g(x) = f (x)−
[
f (a) +

f (b)− f (a)
b − a

(x − a)
]

. Then g ∈ C([a,b]). Since [a,b] is compact, there exists x0 ∈ [a.b] such that
g(x0) = max[a,b] g. We split into two cases:

• g(x) = 0 on [a,b]. Then g ′(x) = 0, so

f ′(x) =
f (b)− f (a)
b − a

.

Because x 7→ αx + β is trivially differentiable, f ′ = α, so we can take any
x0.

• g(x) , 0. Then g(a) = g(b) = 0. Therefore, either

max
[a,b]

g = g(x0) > 0, or min
[a,b]

g = g(x∗) < 0.

Assume WLOG that g(x0) > 0, with x0 being the point of the maximum.
By the First Derivative Test, g ′(x0) = 0 implies that

0 = f ′(x0)−
f (b)− f (a)
b − a

, so f ′(x0) =
f (b)− f (a)
b − a

.
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Theorem 20 (Corollary to the MVT). Let f : (a,b) → R. Assume for all x ∈
(a,b), f ′(x) > 0. Then f is strictly increasing on (a,b); that is, a < x1 < x2 < b
implies that f (x1) < f (x2).

Proof. Fix x1 < x2. Because differentiability implies continuity, f ∈ C([(x1,x2]).
Because f is differentiable at all x ∈ (a,b), we apply the MVT to get

f (x2)− f (x1)
x2 − x1

= f ′(ξ), for some ξ ∈ (x1,x2).

Because f ′(x) > 0, f ′(ξ) > 0 as well, so

f (x2)− f (x1)
x2 − x1

> 0 =⇒ f (x2) > f (x1).

A special case of the Mean-Value Theorem gets its own name:

Theorem 21 (Rolle’s Theorem). Let f : [a,b]→ R be continuous on [a,b] and
differentiable on (a,b). If f (a) = f (b), then there exists a point c ∈ (a,b) such
that f ′(c) = 0.

For this section, we denote f ′(t), g ′(t), . . . as ḟ (t), ġ(t), . . . .

Definition 36 (Classical Solution). We say that the function u(t) is a clas-
sical solution to the following ordinary differential equation:u̇(t) = F(t), a ≤ t ≤ b

u|t=a = x0

if and only if

(1) u(t) ∈ C([a,b]),

(2) There exists u(t) for all t ∈ (a,b), and u̇(t) = F(t), for all t,

(3) u(a) = x0.

Theorem 22 (Uniqueness of Classical Solution). There exists at most one clas-
sical solution u(t) to the above differential equation.

Proof. Suppose u1(t) and u2(t) are two classical solutions. Define v(t) = u1(t)−
u2(t). This satisifes

(1) v(a) = 0,
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(2) v ∈ C([a,T ]), for all T ≤ b,

(3) v̇(t) = ˙u1 −u2(t) = u̇1(t)− u̇2(t) = F −F = 0.

We claim v(t) = 0. By the Mean-Value Theorem,

v(t)− v(a)
t − a

= v̇(t∗) ∈ (a, t) = 0.

So v(t) = v(a) for all t. Thus V (t) = 0 for all t, and so u1(t) = u2(t).

Theorem 23 (Inverse Function Theorem). Let a,b ∈ R, f ∈ C([a,b]), and let
x1 < x2, so that f (x1) < f (x2). Then

(1) There exists f −1 : [f (a), f (b)]→ [a,b], where f −1◦f = id[a,b] and f ◦f −1 =
id[f (a),f (b)],

(2) f −1 ∈ C([f (a), f (b)]),

(3) If x0 ∈ (a,b), and there exists f ′(x0) , 0, then there exists

(f −1)′(f (x0)) =
1

f ′(x0)
.

There are many different notations:

(f −1)′
∣∣∣∣∣
f (x0)

=
1

f ′ |x0

, (f −1)′
∣∣∣∣∣
y0

= f ′
∣∣∣∣∣
f −1(y0)

= f ′(x0).

Proof. (1) [a,b]
f
−→ [α,β] is injective by monotonicity. Then because f is

continuous, by the Intermediate Value Theorem, f is also bijective.

(2) We want to prove that for all ε > 0, we can find δ such that

|y − y0| < δ =⇒ |f −1(y)− x0| < ε.

We use the Intermediate Value Theorem with y1 : f −1(y1) = x0 + ε and
y2 : f −1(y2) = x0 − ε. By monotonicity of f ,

y2 < y0 < y1.

By monotonicity of f −1, take δ = min{|y1 − y0|, |y2 − y0|}. Hence we’re
done.

(3) We want

lim
y→y0

f −1(y)− f −1(y0)
y − y0

=
1

f ′(x0)
.
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Using sequences, for all yn with yn , y0 and yn→ y0, we have

f −1(yn)− f −1(y0)
yn − y0

=
xn − x0

f (xn)− f (x0)
.

Now for all yn, there exists a unique xn such that f (xn) = yn and xn =
f −1(yn). By (b), we know that yn→ y0 if and only if xn→ x0 and yn , y0
if and only if xn , x0. Thus

xn = f −1(yn) =
1

f (xn)− f (x0)/xn − x0
=

1
f ′(x0)

.

Theorem 24 (Calculus Rules). If f ′(x0) and g ′(x0) exist, then

• (Addition Rule):
(f + g)′(x0) = f ′(x0) + g ′(x0)

.

• (Product Rule):

(f g)′(x0) = f ′(x0)g(x0) + g ′(x0)f (x0).

• (Quotient Rule): (
f

g

)′
(x0) =

f ′(x0)g(x0)− g ′(x0)f (x0)
[g(x0)]2 .

Proof. These can be easily proved using the sequential definition for deriva-
tives. For example:

lim
x→x0

f (x)g(x)− f (x0)g(x0)
x − x0

=
f ′(xn)g(xn)− f (xn)g(x0) + f (xn)g(x0)− f (x0)g(x0)

xn − x0

= f (xn)
g(xn)− g(x0)
xn − x0

+
f (x0)− f (x0)
xn − x0

g(x0)

= f ′(x0)g(x0) + g ′(x0)f (x0)

Theorem 25 (Chain Rule). Let f : (a,b) → R, where f ((a,b)) ⊂ (c,d), and g :
(c,d)→ R, and say that f ′(x0) and g ′(x0) exist. Then g ◦ f is defined in (a,b),
and

(g ◦ f )′(x0) = g ′(f (x0)) · f ′(x0).
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Proof. We have that f (x0 + ∆x) = f (x0) +A∆x + r(∆x), where |r(∆x)|
|∆x| → 0, and

f (x0) = y0. Similarly, g(y0 +∆y) = g(y0) +B∆y + ρ(∆y). Thus

(g ◦ f )(x0 +∆x)− (g ◦ f )(x0) = g(f (x0 +∆x))− g(f (x0))

= g(f (x0) +A∆x+ r(∆x))− g(f (x0))

= g(f (x0)) +BA∆x+Br(∆x) + ρ(A∆x+ r(∆x))− g(f (x0))

= BA∆x+R(∆x), (R(∆x) = Br(∆x) + ρ(A∆x+ r∆x))

Then we can easily see that
|R(∆x)|
|∆x|

→ 0,

so g ◦ f is differentiable by definition.

Theorem 26 (Generalized Mean Value Theorem). Let f ,g ∈ C([a,b]), and as-
sume f ′(x) and g ′(x) exist for all x ∈ (a,b). Then

f (b)− f (a)
b − a

=
f ′(ξ)
g ′(ξ)

,

for some 0 < ξ < x.

We can use this to prove another famous Calculus theorem.

Theorem 27 (L’Hôpital’s Rule). Let f : (a,b)→ R, a,b ∈ R∪ (−∞,∞), and g :
(a,b) → R. Also assume that f ′(x) and g ′(x) exist for all x ∈ (a,b), and that
g(x) , 0 for x ∈ Vε(0). Suppose f (x), g(x)→ α, and x→ α+, where α is either 0
or ±∞, and suppose that

f ′(x)
g ′(x)

= c ∈R∪ {±∞}, as x→ a+.

Then
f (x)
g(x)

→ c, as x→ a+.

Proof. There are many cases to prove, but we only show one: a ∈R, α = 0, and
c is anything. Define by continuity, f (0) = 0, g(0) = 0, and f ,g : [a,b/2]→ R.
By the GMVT,

f (x)
g(x)

=
f (x)− f (0)
g(x)− g(0)

=
f ′(ξ)
g ′(ξ)

, for some 0 < ξ < x.

We want to evaluate limx→0+
f (x)
g(x) . Given ε > 0, there exists 0 < z ≤ δ such that∣∣∣∣∣ f ′(z)g ′(z)

− c
∣∣∣∣∣ ≤ ε.
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Then ∣∣∣∣∣ f (x)
g(x)

− c
∣∣∣∣∣ =

∣∣∣∣∣ f ′(ξ)
g ′(ξ)

− c
∣∣∣∣∣ ≤ ε,

if 0 ≤ ξ ≤ x ≤ δ, as desired.

3.3 Differentials

Suppose x ∈R (not a function), and fix x0 ∈R. Then

dx = (dx)x0
= x − x0,

and so dx is just a number. If f is a fucntion, assume that f ′(x0) exists. Then

df = (df )x0
= (df )(x0,dx) = f ′(x0)dx.

So df |x0
is a function of dx. Now suppose that f (n)(x0) exists. Then

(dnf )x0
= f (n)(x0)(dx)n.

Thus,

• df = f ′(x0)dx, which is linear in dx,

• d2f = f ′′(x0)(dx)2, which is quadratic in dx,

• d3f = f ′′′(x0)(dx)3, which is cubic in dx,

• and so on.

Theorem 28 (Invariance of df ). Let f be a function, and assume f ′(x0) exists.
Then,

• If x is not a function, and x ∈R, then

df = f ′(x0)dx = f ′
∣∣∣∣∣
x0

dx.

• If x is a function, x(t), and x(t0) = x0, then

df = d(f (x(t)) = f ′
∣∣∣∣∣
x0

x′
∣∣∣∣∣
t0

dt = f ′
∣∣∣∣∣
x0

dx.

Notice that either way, df turns into the same form. That is, for x being a
variable and x being a function,

df = f ′(x)dx.

This is only true for df . We can check this with d2f .
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• For x not a function,

d2f = f ′′(x))(dx)2 = f ′′
∣∣∣∣∣
x0

(dx)2.

• For x being a function,

d2f = d2(f (x(t)) = [f (x(t))]′′(dt)2

= (f ′x′)′(dt)2

= (f ′′x′x′ + f ′x′′)dt dt

= f ′′
∣∣∣∣∣
x0

(x′dt)2 + f ′x′′(dt)2

= f ′′
∣∣∣∣∣
x0

(dx)2 + f ′
∣∣∣∣∣
x0

x′′
∣∣∣∣∣
t0

dt2

As we can obviously see, d2f does not have this invariance property. Differ-
entials follow the basic algebraic properties that we expect them to:

• d(f g) = (df )g + g(df ),

• d(cf ) = cdf , for c ∈R,

• d( fg ) = (df )g−f (dg)
g2 .

Example 4. Compute f ′ for f (x) = exp(sin(x2 + lnx)).

Solution. We have

df = d(ez) = ez dz = esin(x2+lnx)d(sin(x2 + lnx)

= e(··· )d(sinu) = e(··· ) cosudu

= e(··· ) cos(· · · )d(x2 + lnx)

= e(··· ) cos(· · · )
[
2xdx+

1
x
dx

]
= esin(x2+lnx) cos(x2 + lnx)

(
2x+

1
x

)
dx

We can rigorously define differentials as maps. For a fixed point a ∈ R, the
tangent space at a, denoted TaR = Ta, is the line R with the origin at a. More
formally, Ta is a vector space

Ta = {a} ×R,
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with the following operations:

(a,h1) + (a,h2) = (a,h1 + h2), C(a,h) = (a,Ch).

Usually we will just denote this as h1,2 ∈ Ta, h1 + h2 ∈ Ta, and Ch ∈ Ta. Using
this idea, we can now actually define what a "differential" really is.

Definition 37 (Differential). Suppose f is differentiable at a. The differ-
ential of f at a, (df )a, is the linear mapping between the corresponding
tangent spaces

(df )a : Ta→ Tf (a)

h 7→ f ′(a)h.

Directly from this, the chain rule (f ◦ g)′ |a = f ′ |g(a)g
′ |a takes the form

d(f ◦ g)a = (df )g(a) ◦ (dg)a,

so that d(f ◦g)a(h) = f ′ |g(a) ·g ′ |a ·h. Then going back to the main formula for the
differential of a function f = f ′dx, we can see that this is actually the identity
map id

R
: x→ x, which is differentiable at a with x′ = 1. Its differential will be

(dx)a : Ta→ Ta

h 7→ h.

Invoking the chain rule, we get

(df )a = (df )a ◦ d(id
R

)a = f ′(a)(dx)a.

This gives us the familiar form that we expect; that is,

(df )a = f ′(a)(dx)a.

Then for any h ∈ Ta,

(df )a(h) = f ′(a) · ((dx)a(h)) = f ′(a)h.

Tangent spaces are a little preview for how real analysis ties into differential
geometry, and we shall explore more of those ideas in a later chapter.



4Riemann Integration

4.1 Introduction

Definition 38 (Partition). A partition of [a,b] is any P = {x0, . . . ,xn}, where
a = x0 < x1 < · · · < xn−1 < xn = b.

We denote the set of all partitions as

P[a,b] = {P | P is a partition of [a,b]}.

Definition 39 (Gap). The gap of a partition P is defined as max |xj−1−xj |.

Definition 40 (Riemann Sums). Let f : (a,b)→ R. Then for all P ∈ P[a,b],
the lower Riemann sum is defined to be

L(f ,P ) =
n∑
j=1

mj |xj − xj−1|, where mj = inf
[xj−1,xj ]

f .

Similarly, the upper Riemann sum is defined to be

U (f ,P ) =
n∑
j=1

Mj |xj−1 − xj |, where Mj = sup
[xj−1,xj ]

f .

Because we know that mj ≤Mj for all j, it must be true that

L(f ,P ) ≤U (f ,P ), ∀f , ∀P ∈ P[a,b].

Note that if our function f is not bounded, then

sup
[a,b]

f =∞ =⇒ ∀P ∈ P[a,b], we have some sup
[xj−1,xk ]

f =∞ =⇒ U (f ,P ) =∞, ∀P .
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Thus U (f ,P ) and L(f ,P ) are only nontrivial for bounded functions, where

sup
[a,b]
|f | <∞, inf

[a,b]
|f | > −∞.

Definition 41 (Lower Integral). For all f : [a,b]→R, we define the lower
integral as ∫ b

a
f = sup{L(f ,P ) | P ∈ P[a,b]}.

Definition 42 (Upper Integral). For all f : [a,b]→R, we define the upper
integral as ∫ b

a
f = inf{U (f ,P ) | P ∈ P[a,b]}.

Combining these definitions, we can formally define Riemann integration.

Definition 43 (Riemann Integral). We say the function f : [a,b]→ R is
Riemann integrable iff ∫ b

a
f =

∫ b

a
f ∈R.

In this case, we call ∫ b

a
f =

∫ b

a
f =

∫ b

a
f

the Riemann integral of f over [a,b].

4.2 More on Riemann Integral

Definition 44 (Refinement). A partition P ∗ ∈ P[a,b] is a refinement of P ∈
P[a,b] iff P ∗ ⊃ P ; that is, if P = {a = x0 < x1 < · · · < xn−1 < xn = b}, then for all
j, P ∗ ∩ [xj−1,xj ] is a partition of [xj−1,xj ].
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Theorem 29. Let f : [a,b]→R be bounded. Then

(1) L(f ,P ) ≤ L(f ,P ∗) and U (f ,P ) ≥U (f ,P ∗),

(2) L(f ,P1) ≤U (f ,P2), for all P1, P2 ∈ P[a,b],

(3) For all P ∈ P[a,b],

L(f ,P ) ≤
∫ b

a
f ≤

∫ b

a
f ≤U (f ,P ).

Proof. At once, (1) =⇒ (2). Take P ∗, a common refinement of P1 and P2 (P ∗ =
P1 ∪ P2). Then

L(f ,P1) ≤ L(f ,P ∗) ≤U (f ,P ∗) ≤U (f ,P2).

(2) =⇒ (3) at once as well because

L(f ,P1) ≤U (f ,P2).

On the left hand side, take supP1∈P[a,b]
f , which gives∫ b

a
f ≤U (f ,P2), ∀P2 ∈ P[a,b].

On the right hand side, take infP2∈P[a,b]
f , which gives∫ b

a
f ≥ L(f ,P1), ∀P1 ∈ P[a,b].

Hence we only need to prove (1). Notice that

L(f ,P ) =
n∑
j=1

inf
[xj−1,xj ]

f |xj−1 − xj |.

For fixed j, P ∗∩[xj−1,xj ] is a partition of [xj−1,xj ]. Because yk−1, yk] ⊂ [xj−1,xj ],

inf
[yk−1,yk ]

f ≥ inf
[xj−1,xj ]

f =⇒
n∑
k=1

inf
[yk−1,yk ]

f |yk−1 − yk | ≥
n∑
k=1

inf
[xj−1,yj ]

f |yk−1 − yk |

Then
n∑
k=1

inf
[xj−1,yj ]

f |yk−1 − yk | = inf
[xj−1,xj ]

f
m∑
k=1

|yk−1 − yk | = inf
[xj−1,xj ]

f |xj−1 − xj |.

Hence

L(f ,P ∗ ∩ [xj−1,xj ]) ≥
n∑
j=1

inf
[xj−1,xj

|.
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Then the left hand side is equal to L(f ,P ∗), and the right hand side is equal to
L(f ,P ).

Consider the Dirichlet function,

fD (x) =

1, x ∈Q
0, x ∈R \Q

on some interval [a,b]. We can tell that this is not Riemann integrable, because

L(fD , P ) = 0, ∀P , U (fD , P ) = 1, ∀P ,

and so ∫ b

a
f = 0 < 1 =

∫ b

a
f .

We see that even though fD (x) is bounded, it does not mean it is Riemann
integrable.

Theorem 30 (Archimedes-Riemann Theorem). Let f : [a,b]→ R be bounded.
Then

(1) f is Riemann integrable on [a,b] if and only if there exists Pn, a sequence
of partitions such that

U (f ,Pn)−L(f ,Pn)→ 0, as n→∞,

(2) If the above condition holds, then for Pn, we have

lim
n→∞

U (f ,Pn) = lim
n→∞

L(f ,Pn) =
∫ b

a
f .

(3) The first statement is equivalent to:

∀ε > 0, ∃Pε ∈ P[a,b] such that U (f ,Pε)−L(f ,Pε) < ε.

Proof. We only prove the third statement. AssumeU (f ,Pε)−L(f ,Pε) < ε. Then
for arbitrary ε > 0,

L(f ,Pε) ≤
∫ b

a
f ≤

∫ b

a
f ≤U (f ,Pε) =⇒

∫ b

a
f −

∫ b

a
f < ε.

Example 5. Prove that
∫ 1

0 x
2 exists and equals 1

3 .
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Proof. We have that

Pn =
{
k
n
, k = 0, . . . ,n

}
,

and

Mj+1 =
(
j + 1
n

)2

, mj+1 =
(
j

n

)2

.

Thus

L(f ,Pn) =
n∑
j=1

(
j − 1
n

)2

· 1
n

=
1
n3

n∑
j=1

(j − 1)2 =
1
n3 (02 + 12 + · · ·+ (n− 1)2.

U (f ,Pn) =
1
n3 (02 + 12 + · · ·+ (n− 1)2 +n2).

It follows that

0 ≤U (f ,Pn)−L(f ,Pn) =
n2

n3 =
1
n
→ 0 =⇒ x2 is Riemann integrable.

Then∫ 1

0
x2 = lim

n→∞
U (f ,Pn) = lim

n→∞
1
n3

(
n(n+ 1)(2n+ 1)

6

)
= lim
n→∞

(1 + 1
n )(2 + 1

n )
6

=
1
3
.

Theorem 31. If f : [a,b]→R is continuous, then f is Riemann integrable.

Proof. Notice that f is uniformly continuous. We choose a partition P of [a,b]
with

|P | = max
k∈[1,n]

(xk − xk−1) ≤ δ
2
.

Then

U (f ,P )−L(f ,P ) =
n∑
k=1

(xk − xk−1)

 sup
[xk−1,xk ]

f − inf
[xk−1,xk ]

f

 < ε|b − a|.
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4.3 Integral Properties/Theorems

Theorem 32 (Properties of Integrals). (1) For c ∈ [a,b] and f Riemann inte-
grable on [a,b], then ∫ b

a
f =

∫ c

a
f +

∫ b

c
f .

(2) If f ,g are Riemann integrable, and λ,µ ∈R, then∫ b

a
(λf +µg) = λ

∫ b

a
f +µ

∫ b

a
g.

(3) If f ≥ 0 on [a,b] and f is Riemann integrable, then∫ b

a
f ≥ 0.

(4) If m ≤ f (x) ≤M on [a,b], then

m(b − a) ≤
∫ b

a
f ≤M(b − a).

(5) If f (x) ≤ g(x) on [a,b], then ∫ b

a
f ≤

∫ b

a
g.

(6) If f is Riemann integrable, then |f | is Riemann integrable as well, and∣∣∣∣∣∣
∫ b

a
f

∣∣∣∣∣∣ ≤
∫ b

a
|f |.

Proof. Basic proofs using partitions.

Theorem 33 (Mean Value Theorem). If f is continuous on [a,b], then there
exists c ∈ [a,b] such that

f (c) =
1

b − a

∫ b

a
f .

Proof. Let M = max[a,b] f = f (β), and m = min[a,b] f = f (α). Then

m ≤ f (x) ≤M =⇒ f (α) ≤
∫ b

a

1
b − a

f ≤ f (β).



CHAPTER 4. RIEMANN INTEGRATION 37

By the Intermediate Value Theorem, there exists c ∈ [α,β] such that

f (c) =
1

b − a

∫ b

a
f .

Theorem 34 (Fundamental Theorem of Calculus). (a) If f : [a,b] → R is
Riemann integrable, and F : [a,b] → R satisfies F′(x) = f (x) for all
x ∈ [a,b], then ∫ b

a
f = F(b)−F(a).

(b) Let g : [a,b]→R be Riemann integrable, and for x ∈ [a,b], define

G(x) =
∫ x

a
g.

Then G is continuous on [a,b]. If g is continuous at some point c ∈ [a,b],
then G is differentiable at c and G′(c) = g(c).

Proof. (a)

Theorem 35 (Integration By Parts). For f and g Riemann integrable,∫ b

a
f ′g = f g

∣∣∣∣∣b
a
−
∫ b

a
f g ′ .

4.4 Discontinuous Functions

We know that continuous functions are always Riemann integrable, but dis-
continuous functions like the Dirichlet function are not Riemann integrable.
As it turns out, for example, the Heaviside function, defined as

H(x) =

0, x ≤ 0

1, x > 0
,

is Riemann integrable on [−1,1], despite being discontinuous.

Example 6. Prove that

ψ(x) =

1
q , x ∈Q,
0, x <Q

is Riemann integeable on [0,1].
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Proof. Let α ∈ Q∩ [0,1]. Then ψ is discontinuous at α. Let yn → α, for yn <
Q. Then ψ(yn) 6→ ψ(α) = 0. Let β ∈ Q ∩ [0,1]. Any sequence pn

qn
∈ Q where

limn→∞
pn
qn

= β has qn→∞. Thus

lim
n→∞

ψ

(
pn
qn

)
= 0 = ψ(β).

Thus ψ(x) is Riemann integrable on [0,1].

Example 7. Prove that f (x) = sin 1
x for x > 0 and f (x) = 0 for x = 0 is Riemann

integrable on [0,1].

Proof. Let P = xk , with 0 ≤ k ≤ n, be a partition x0 = 0 < x1 = ε < x2 < · · · < xn =
1. Then

U (f ,P )−L(f ,P ) = ε

sup
[0,ε]

f − inf
[0,ε]

f

+U
(
f

∣∣∣∣∣
[ε,1]

, P

)
−L

(
f

∣∣∣∣∣
[ε,1]

, P

)

≤ 2ε+U
(
f

∣∣∣∣∣
[ε,1]

, P

)
−L

(
f

∣∣∣∣∣
[ε,1]

, P

)
.

Since the upper and lower Riemann sums are arbitrarily small, we proved that
f is Riemann integrable.

Theorem 36. Let f : [a,b]→ R be bounded, and suppose f has a finite set of
discontinuities D(f ) in [a,b]. Then f is Riemann integrable.

Proof. Fix ε > 0. Then choose a partition P = xk so that∑
D(f )∩[xk−1,xk ],∅

(xk−1,xk) < ε.

Then
U (f ,P )−L(f ,P ) =

∑
D(f )∩[xk−1,xk ],∅

+
∑

D(f )∩[xk−1,xk ]=∅
.

Let |f (x)| ≤M, x ∈ [a,b]. Then the first term equals 2Mε, and the second term
represents where f is continuous. Hence f is Riemann integrable.

Theorem 37. Any monotonic function is Riemann integrable.

Proof. Assume f : [a,b]→ R is non-decreasing; that is, x ≤ y =⇒ f (x) ≤ f (y).
let P = xk , where 0 ≤ k ≤ n, be a partition of [a,b]. Then

sup
[xk−1,xk ]

f (x) = f (xk), inf
[xk−1,xk ]

f (x) = f (xk−1).
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Assume |P | = maxk(xk − xk−1) = ε. Then we have

U (f ,P )−L(f ,P ) =
n∑
k=1

(xk − xk−1)(f (xk)− f (xk−1)) ≤ ε(f (b)− f (a)).

Definition 45 (Zero Content). A subset A ⊆ [a,b] has zero content if for all
ε > 0, there exists I1, . . . , In, open finite intervals such that A ⊆ I1∪· · ·∪ In,
and |I1|+ · · ·+ |In| < ε.

Finite sets have zero content.

Theorem 38. If D(f ) has zero content, then f is Riemann integrable.

4.5 Change of Variables and Taylor Polynomials

Before, we have omitted the differential when discussing integrals. In actual-
ity, we denote integrals as such: ∫ b

a
f (x)dx.

With this, we can rewrite the Fundamental Theorem of Calculus as∫ b

a
df (x) = f (b)− f (a).

Theorem 39. Let ϕ : [a,b] → R be differentiable, and ϕ′ ∈ C([a,b]), with
ϕ([a,b]) ⊂ [c,d]. Suppose f ∈ C([c,d]). Then∫ b

a
(f ◦ϕ) ·ϕ′ =

∫ ϕ(b)

ϕ(a)
f .

In differential notation,∫ b

a
f (ϕ(x)) ·ϕ′(x)dx =

∫ ϕ(b)

ϕ(a)
f (y)dy.

Proof. Because all functions f , ϕ, ϕ′ are continuous, the integrals exist. We
want to prove that ∫ x

a
(f ◦ϕ)ϕ′ =

∫ ϕ(x)

ϕ(a)
f , ∀x ∈ [a,b].



CHAPTER 4. RIEMANN INTEGRATION 40

At x = a, the both the left and right hand side will be zero. Then for all
x ∈ [a,b], the derivative of the left hand side will be

f (ϕ(x))ϕ′(x),

while the derivative of the right hand side will be

d
dx

∫ y

ϕ(a)
f

∣∣∣∣∣
y=ϕ(x)

 = f (y)
∣∣∣∣∣
y=ϕ(x)

·ϕ′(x).

Thus by the Mean Value Theorem, the left and right hand side will be equal.

Example 8. Compute
∫ 3

2 e
x2
xdx.

Solution. We have ∫ 3

2
ex

2
xdx =

∫ 3

2
ex

2 d(x2)
2

=
1
2

∫ 9

4
et dt

=
1
2

(e9 − e4)

Theorem 40 (Taylor’s Formula). Let I be some (a − δ,a + δ), for δ > 0. Let
f : I → R, and suppose f ′ , f ′′ , . . . , f (n+1) exist and f (n+1) ∈ C(I). Then for all
b ∈ I ,

f (b) = f (a) +
f ′(a)

1!
(b − a) +

f ′′(a)
2!

(b − a)2 + · · ·+
f (n)(a)
n!

(b − a)n +Rn(b),

where the remainder is called Taylor’s polynomial:

Rn(b) =
1
n!

∫ b

a
(b − t)f (n+1)(t)dt

Proof. We have that

f (b) = f (a) +
∫ b

a
f ′(x)dx = f (a) +

∫ b

a
f ′(x)d(x − b)

= f (a) + f ′(x)(x − b)
∣∣∣∣∣x=b

x=a
−
∫ b

a
(x − b)d(f ′(x))

+ f (a) +
f ′(a)

1!
(b − a)−

∫ b

a

f ′′(x)d(x − b)2

2

= · · ·

and so on...
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We can use this, for example, to find an infinite series expansion for e. We
know that (ex)(n) = ex. So

e = e1 = 1 +
1
1!

+
1
2!

12 + · · ·+ 1
n!

+Rn(1) = 1 +
1
1!

+
1
2!

+ · · ·+ 1
n!

+Rn(1).

As n goes to infinity,

|Rn(1)| =
∣∣∣∣∣∣ 1
n!

∫ 1

0
(1− t)net dt

∣∣∣∣∣∣ ≤ 1
n!

∫ 1

0
|(1− t)n|et dt ≤

1
n!

∫ 1

0
2ncdt =

c2n

n!
→ 0.

Thus

e =
∞∑
n=0

1
n!
.

4.6 Generalizations of Riemann Integral

We study two different methods of generalizing the normal Riemann integral
to make it applicable in a wider variety of situations: the Henstock-Kurzweil
Integral (or Generalized Riemann integral/GR-integral) and the Riemann-
Stieltjes integral. They approach the problem in different ways: one gener-
alizes the partition structure, and one generalizes the notion of length.

Henstock-Kurzweil Integral

Definition 46 (Tagged Partition). Let P = {x0,x1, . . . ,xn} be a partition of
[a,b]. A tagged partition is one where in addition to P , we have chose
points ck in each of the subintervals [xk−1,xk].

Definition 47 (Generalized Riemann Sum). Given a function f : [a,b]→
R and a tagged partition (P ,ck), the Riemann sum generated by this parti-
tion is given by

R(f ,P ) =
n∑
k=1

f (ck)(xk − xk−1).

Evidently, we have
L(f ,P ) ≤ R(f ,P ) ≤U (f ,P ).

Definition 48 (δ−fine). Let δ > 0. A partition P is δ−fine if every subin-
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terval [xk−1,xk] satisfies xk − xk−1 < δ. In other words, every subinterval
has width less than δ.

Theorem 41 (Limit Criterion for Riemann Integrability). A bounded function
f : [a,b]→R is Riemann-integrable with∫ b

a
f = A

if and only if for every ε > 0, there exists δ > 0 such that for any tagged parti-
tion (P ,ck) that is δ−fine, it follows that

|R(f ,P )−A| < ε.

If we allow δ to be a function of x, then we can generalize the Riemann inte-
gral.

Definition 49 (Gauge). A function δ : [a,b]→R is called a gauge on [a,b]
if δ(x) > 0 for all x ∈ [a,b].

Definition 50 (δ(x)−fine). Given a gauge δ(x), a tagged partition (P ,ck) is
δ(x)−fine if every subinterval [xk−1,xk] satisfies xk − xk−1 < δ(ck). In other
words, every subinterval has width less than δ(ck).

If δ(x) is constant, then we have the normal Riemann integral. It is when this
is not constant, that we have found a way to describe measuring the fineness
of partitions that is quite different. Consider the interval [0,1]. If δ(x) = 1/9,
we want to find a δ(x)−fine partition of [0,1]. Take the partition 0 = x0 < x1 <
· · · < x18 = 1 where

xk =
k

18
, k ∈ [1,18].

We choose any ck ∈ [xk−1,xk], which gives us that (P , {ck}) is a δ(x)−fine parti-
tion of [0,1]

Theorem 42. Given a gauge δ(x) on an interval [a,b], then there exists a tagged
partition (P ,ck) that is δ(x)−fine.

Using this idea, we introduce the GR-Integral (Generalized-Riemann Inte-
gral), which also has a special name.

Definition 51 (Henstock-Kurzweil Integral). A function f on [a,b] has
Henstock-Kurzweil integral A if, for every ε > 0, there exists a gauge δ(x)
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on [a,b] such that for each tagged partition (P ,ck) that is δ(x)−fine, it is
true that

|R(f ,P )−A| < ε.

In this case, we write

A =
∫ b

a
f .

Theorem 43. If a function is Henstock-Kurzweil integrable, then the value of
said integral is unique.

Proof. Let A1 and A2 be two values of the HK-integral of f on [a,b]. For each
ε > 0, there exists gauges δ1(x) and δ2(x) such that for every tagged partitions
(P1, {ck}

n1
k=1) and (P2, {ck}

n2
k=1), we have

|R(f ,P1)−A1| <
ε
2
, |R(f ,P2)−A2| <

ε
2
.

Consider the gauge δ(x) = min{δ1(x),δ2(x)}. Then there exists a tagged parti-
tion (P , {ck}nk=1 that is δ(x)−fine. Hence

|R(f ,P )−A1| <
ε
2
, |R(f ,P )−A2| <

ε
2
,

and so
|A1 −A2| ≤ |A1 −R(f ,P )|+ |R(f ,P )−A2| < ε.

Thus, A1 = A2.

It should be obvious to see that

{{Riemann integrable} =⇒ Henstock-Kurzweil integrable}.

We just take δ(x) = δ, and so the tagged partition (P , {ck}) will be δ−fine. The
converse is not true. Indeed, Dirichlet’s function, while not Riemann inte-
grable, is Henstock-Kurzweil integrable, and∫ 1

0
fD (x) = 0.

Proof. Let ε > 0. We want to construct a gauge δ(x) on [0,1] such that when-
ever (P , {ck}nk=1) is δ(x)-fine, it follows that

0 ≤
n∑
k=1

fD (ck)(xk − xk−1) < ε.

The gauge represents a restriction of the size of ∆xk = xk−xk−1 in the sense that
∆xk < δ(ck). The Riemann sum will consist of products of the form fD (ck)∆xk .
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Then for irrational tags, fD (ck) = 0, so we have nothing to worry about. We
just need to ensure that if ck is rational, it comes from a suitably thin interval.

Let {r1, r2, . . . } be an enumeration of the countable set of rational numbers
in [0,1]. For each rk , let δ(rk) = ε/2k+1. For x <Q, set δ(x) = 1. Hence we have
constructed a gauge that meets our requirements.

All of our other integral properties and theorems, for example the Funda-
mental Theorem of Calculus or Change of Variables, will also work for HK-
integrable functions.

Riemann-Stieltjes Integral

Definition 52 (α−length). Let I be a bounded interval, and let α : X→R

be a function where I ⊂ X. Then the α−length α[I] of I is defined to be:

α[I] =

0, if I is a point or ∅
α(b)−α(a), if I is one of [a,b], (a,b), (a,b], [a,b)

As an example, for α : R→R given by α(x) = x2, we have that

α[[2,3]] = α(3)−α(2) = 9− 4 = 5, α[(−3,−2)] = −5.

As it turns out, our intuitive sense of what defines "length" is a special case of
α−length if we take α(x) = x, the identity function.

Theorem 44. Let I be a bounded interval, and let α : X → R be a function
defined on some domain where I ⊂ X. Let P ∈ PI be a partition of I . Then

α[I] =
∑
j∈P

α[j].

Definition 53 (Riemann-Stieltjes Integral).



5Series

5.1 Convergence Tests

Definition 54 (Partial Sum). Given a pair of sequences Sn and an, where
Sn = a1 + · · ·+ cn, we call Sn the partial sum.

In general, for any number N ∈N,

∞∑
n=1

an converges =⇒
∞∑
n=N

an converges.

The proof of this is trivial; if Sm = a1 + · · ·+ am, and S̃m = aN + aN+1 + · · ·+ am =
Sm − (a1 + · · ·+ aN−1), which is Sm − k, a constant, which is convergent.

Theorem 45. If
∑∞
n=1 an converges, then limn→∞ an = 0.

Proof. Let Sn = 11 + · · ·+an. Then Sn→ L ∈R. Let Rn = Sn+1 = a1 + · · ·+an+an+1.
Then Rn→ L. Hence Rn − Sn = an+1→ 0.

The converse is false. The harmonic series,

∞∑
n=1

1
n

= 1 +
1
2

+
1
3

+ · · ·

has limn→∞
1
n = 0, but it does not converge.

For series with positive terms, meaning an ≥ 0 for all n, we have that Sn+1 ≥
Sn. Hence the partial sums are monotonically increasing. So for these types
of series:

Theorem 46. Let an ≥ 0. Then
∑∞
n=0 an converges if and only if Sn is bounded.

This leads to one of the most common convergence tests:

Theorem 47 (Comparison Test). Let 0 ≤ an ≤ bn, for all n. Then

∞∑
n=0

bn converges =⇒
∞∑
n=0

an converges.
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Proof. Let Sn = a1 + · · · + an and Rn = b1 + · · · + bn. We know
∑∞
n=1 bn = L <∞.

Therefore, because bn ≥ 0 for all n, Rn ≤ L for all n. Since we assumed that
Sn ≤ Rn ≤ l, Sn converges.

When does the series
∞∑
n=1

1
nα
,

for fixed α, converge? For α ≤ 0, this will diverge, because it fails the diver-
gence test. We call this the p−series. Then we use another convergence test to
figure out its convergence for other α.

Theorem 48 (Integral Test). Let f : [1,∞) → R satisfy (i) f ≥ 0 and (ii) f is
non-strictly decreasing. Let ak = f (k), for all k. Then

∞∑
n=1

an converges⇐⇒ lim
N→∞

∫ N

1
f (x)dx <∞.

Proof. (=⇒) : By monotonicity, Sn is bounded. Then∫ N

1
f (x)dx =

∫ 2

1
f dx+ · · ·+

∫ n

n−1
f dx ≤ a1 + a2 + · · ·+ an−1 ≤M, ∀n.

Hence
∫ N

1 f (x)dx is increasing and bounded.
(⇐=) : Trivial.

Thus, we use the integral test on the p−series, where f (x) = 1
xα for x ≥ 1. Both

conditions hold, so

In =
∫

)1N
dx
xα

=
1

1−α
x1−α

∣∣∣∣∣N
1

=
1

1−α
· [N1−α − 1].

So limn→∞ In is finite only if α > 1. Thus

∞∑
n=1

1
nα

converges for α > 1, and diverges for α < 1. At α = 1,∫ N

1

dx
x

= lnN
n→∞
−−−−−−−→∞.

Thus the p−series converges only for α strictly greater than 1.

Example 9. Prove that
∑∞
n=3

1
n lnn converges.
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Solution. Since lnn ≥ 1, 1
n ≥

1
n lnn . We use the Integral Test on f (x) = 1

x lnx for
x ≥ 3. Since this is positive and monotone, we can then find that

lim
N→∞

∫ N

3

1
x lnx

dx

can be computed to find a numerical solution.

Theorem 49 (Leibniz Alternating Series Test). Suppose limn→∞ an = 0 and an
is monotone decreasing. Then a1−a2 +a3−a4 + · · · =

∑∞
n=1(−1)n+1an converges.

For example, consider the alternating Harmonic series,

∞∑
n=1

(−1)n+1

n
.

This converges, despite the fact that the non-alternating Harmonic series does
not.

Definition 55 (ε-Definition of Convergence). A series
∑∞
n=1 an converges

to some S ∈R if and only if

∀ε >, ∃N such that ∀n ≥N, |Sn − S | < ε.

In sequences, recall that the following is true:

an converges =⇒ |an| converges.

In series, the opposite is true:

∞∑
n=1

|an| converges =⇒
∞∑
n=1

an converges.

Definition 56 (Cauchy Sequence). A sequence an is Cauchy iff

∀ε > 0, ∃N such that if n,m ≥N, then |an − am| < ε.

Theorem 50 (Cauchy Convergence Criterion). A sequence an converges to L ∈
R if and only if an is a Cauchy sequence.

Proof. (=⇒) : By definition, if an converges to L, then

∀ε > 0, ∃N such that if n ≥N, then |an −L| < ε.
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Then slightly modifying this,

n,m ≥N =⇒ |an − am| = |an −L+L− am| ≤ |an +L|+ |am −L| < 2ε.

(⇐=) : Take ε = 1 in the Cauchy definition. Then there exists some N1 such
that if n,m ≥N0, then |an − am| ≤ 1. Then for all n ≥N0,

|an| = |an − aN0
+ aN0

| ≤ |an − aN0
|+ |aN0

| ≤ 1 + |aN0
|.

Therefore for all n,

|an| ≤max{|a1|, |a2|, . . . , |aN0−1|, |aN0
|}.

Thus |an| is bounded. Now by Bolzano-Weierstrass, there exists a subsequence
bk = ank such that bk → L ∈R as k→∞. Now take ε > 0. Then

∃Nε such that if n,m ≥Nε, then |an − am| < ε,

∃Mε such that if m ≥Mε, then |bm −L| < ε.

But bm = anm . We find m0 such that nm0
≥ Nε and m0 ≥ Mε. Then for all

n ≥Nε, we have

|an −L| = |an − bm0
+ bm0

−L| ≤ |am − bm0
|+ |bm0

−L| < 2ε.

Definition 57 (Absolute/Conditional Convergence). A series
∑∞
n=1 an con-

verges absolutely iff
∑∞
n=1 |an| converges. A series

∑∞
n=1 an converges con-

ditionally iff
∑∞
n=1 an converges, but

∑∞
n=1 |an| does not.

5.2 Special Topics

Definition 58 (Rearrangement). Let σ : N→ N be a bijection. The se-
ries

∑∞
n=1 bn =

∑∞
n=1 aσ (n) is called a rearrangement (or permutation) of the

series
∑∞
n=1 an.

The main question we want to ask is if
∑∞
n=1 an = S, then what is

∑∞
n=1 aσ (n)?

Theorem 51. Assume
∑∞
n=1 an converges to some S ∈ R absolutely. Then for

all σ : N→N,
∑∞
n=1 aσ (n) = S.
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Proof. We want to estimate∣∣∣∣∣∣∣
n∑
k=1

aσ (k) − S

∣∣∣∣∣∣∣ , for large n.

We have that
σ−1({1, . . . ,N }) = {σ−1(1), . . . ,σ−1(N )}.

Let k = max{σ−1(1), . . . ,σ−1(N )}. Then {1, . . . ,N } ⊂ {σ−1(1), . . . ,σ−1(N )}. For m ≥
k, ∣∣∣∣∣∣∣

m∑
n=1

aσ (n) − S

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
N∑
j=1

aj +
∑
j≥N

aj − S

∣∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣
N∑
j=1

aj − S

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
∑
j≥N

aj

∣∣∣∣∣∣∣∣ ≤ ε+
∑
j≥N
|aj |

≤
∞∑
j=N

|aj |+ ε < 2ε.

Theorem 52 (Riemann Rearrangement Theorem). Let
∑∞
n=1 an converge con-

ditionally. Let L ∈R∪ {±∞}. Then there exists σ : N→N such that

∞∑
n=1

aσ (n) = L.

Proof. Let bn be the sequence containing all an such that an ≥ 0, preserving
order. Let cn be the sequence containing all an such that an ≤ 0, preserving
the order. We claim that

∞∑
n=1

bn =
∞∑
n=1

cn→∞.

They can’t converge, because
∑∞
n=1 an converges conditionally. Let Sn =

∑n
k=1 |ak |.

Then for all n,

0 ≤ Sn = |a1|+ · · ·+ |an| =
∑
k

bk +
∑
k

ck ≤
∞∑
k=1

bk +
∞∑
k=1

|ck | = c <∞.

Thus 0 ≤ S1 ≤ · · · ≤ Sn ≤ C, for all n. Thus there exists some limn→∞Sn < ∞,
so

∑∞
n=1 |an| converges, a contradiction. Now assume that

∑∞
n=1 cn = −∞, and∑∞

n=1 bn < ∞. Denote Rn and Tn as the partial sums respectively. Then Tn →
−∞, Rn→ c, so

n∑
k=1

ak = Tm1 +Rm1
≤ Tm1

+ c.
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As m,n→∞, Tm→ −∞, and
∑∞
n=1 an = −∞, a contradiction. Hence

∑∞
n=1 bn =

∞ and
∑∞
n=1 cn = −∞, for bn ≥ 0 and cn < 0. If we fix any L > 0,L ∈ R, and

fix ε > 0. We find Nε such that for n ≥ N , |bn|, |cn| ≤ ε. Then there exists a
unique n1 such that b1 + · · · + bn1

≤ L, and there exists a unique m1 such that
b1 + · · · + bn1

+ cn + · · · + cm1
≥ L. We repeat this process until we form a new

sequence (b1, . . . , bn+1, cn, . . . , cm1
,bn1+2) which is a rearrangement of an under

some σ . Denote aσ (n) as S̃n. We take M such that forN ≥ M, S̃n contains all
b1, . . . , bNε , c1, . . . , cNε , . . . , so

|S̃n −L| ≤ sup
k≥n≥M

|aσ (k)| ≤ sup
j≥Nε
|bj |, |cj | < ε.

Suppose a series
∑∞
n=1 an converges absolutely. Denote

a+
n = max{0, an}, a−n = min{0, an}.

Obviously
∑∞
n=1 a

+
n converges to some P ∈ R, and

∑∞
n=1 a

−
n converges to some

N ∈R. But does
∑∞
n=1 an = P +N ?

Definition 59 (Regrouping). The regrouping of the series
∑∞
n=1 is another

series
∑∞
n=1 bn such that b1 = (a1 + · · · + an1

), b2 = anj+1
+ · · · + an2

, with
n1 < n2 < · · · .

Theorem 53. Suppose
∑∞
n=1 an = S ∈ R. Then any regrouping of this series

will also equal S.

Proof. Let
∑∞
n=1 bn ∼ Sn, and

∑∞
n=1 an ∼ Rn. Then

Sm = b1 + · · ·+ bm = a1 + · · ·+ anm = Rnm =⇒ Sm1
is a subsequence of Rn.

Then if Rn converges, that means Sm converges to the same limit.



6Elementary Functions

6.1 Exponential/Logarithm Function

We know that x 7→ x1/n for (0,∞)→ (0,∞) and n ∈N is the Inverse Function
Theorem applied to x 7→ xn. This means

(x1/n)n ≡ x, (xn)1/n ≡ x.

We can extend this to n ∈Z by saying that if n < 0, then

xn =
1

x(−n)
, x1/n =

1
x(−1/n)

.

We can then extend to r = p
q ∈Q where x 7→ (x1/q)p. We can use the properties

of x · · ·x and its inverse x1/n to derive the usual properties of xr for x > 0:

• xr1xr2 = xr1+r2 ,

• (xr1 )r2 = xr1r2 .

Theorem 54. Define F : (0,∞)→R as

x 7→
∫ x

1

1
t
dt.

Then

(1) F is infinitely differentiable, strictly increasing, and F(x)→ −∞ as x→
0+, F(x)→∞ as x→∞.

(2) For all a,b > 0, F(ab) = F(a) +F(b).

(3) For all a > 0 and r ∈Q, F(ar ) = rF(a).

Proof. (1) Follows immediately by FTC and properties of differentiable functi-
nos.

(2) Without loss of generality, assume 0 < a < b. Then

F(ab) =
∫ ab

0

dx
x

=
(∫ a

1

dx
x

+
∫ ab

a

dx
x

)
= F(a) +

∫ ab

a

d(xa)
xa

= F(a) +F(b).
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(3) Consider h : (0,∞)→R given by x 7→ F(xr )− rF(x). Then h(1) = 0 and

h′(x) = F′
∣∣∣∣∣
xr
rxr−1 − rF′

∣∣∣∣∣
x

=
1
xr
rxr−1 − r

x
= 0.

By MVT, h(x) = 0, for all x. By the Proposition, (0,∞)
F←→ (−∞,∞), and

since F is strictly increasing, so is 1
F on R. Indeed, consider a,b ∈R such

that a < b. Find x,y > 0 such that F(x) = a, F(x) = b, and so x = F−1(a)
and y = F−1(b). Now a < b ⇐⇒ F(x) < F(y) must have x < y, because
otherwise x ≥ y =⇒ F(x) ≥ F(y), a contradiction. But x = F−1(a), y =
F−1(b), so a < b⇐⇒ F−1(a) < F−1(b).

Definition 60 (Exponential/Logarithm Function). For all x > 0, we de-
fine F(x) = lnx, and for all x ∈R, define F−1(x) = exp(x), or ex.

Some notes:

• There exists a unique number, called e, such that lne = 1 by the IVT.

• Both lnx and exp(x) are infinitely differentiable on their respective do-
mains.

• ln(exp(x)) ≡ x, for all x ∈R.

The derivatives of these functions will be

(lnx)′ =
1
x
, x > 0 (by FTC).

(ln(expx))′ = ln′
∣∣∣∣∣
expx
· (expx)′ ≡ 1 =⇒ (expx)′ = expx.

Finally, we can use lnx, expx, and ar for r ∈ Q to define exponents for real
numbers; that is, ax for x ∈R. We know

ar = exp(ln(ar )) = exp(r lna).

If a > 0, and x ∈R, we define ax = exp(x lna). ax is also infinitely differentiable.
Some properties of real exponents:

• If a = e, then ex = exp(x · 1) = exp(x).

• (ax)′ = exp(x lna)′ = exp(lnxa) · lna = ax lna.
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Theorem 55. Suppose c,k ∈ R. Then u(x) = kecx will satisfy the following
differential equation: u′ = ku, x ∈R

u|x=0 = c

Proof. (⇐=) : Follows by Chain Rule.
(=⇒) : Let v(x) be a another solution. Define h(x) = v(x)

ekx
− c; h(0) = v(0)

1 − c = 0.
Then

h′(x) =
v′ekx − (ekx)′v

(ekx)2
=
kvekx − kekxv

e2kx
= 0, ∀x ∈R.

This theorem also tells us that

xα = exp(α lnx), for x > 0, α ∈R.

6.2 Sine and Cosine

Definition 61 (Sine/Cosine Function). The solution to the differential
equation 

u′′ +u = 0, x ∈R
u|x=0 = 0

u′ |x=0 = 1

is defined as u(x) = sinx, the sine function. Similarly, the solution to the
differential equation 

v′′ + v = 0, x ∈R
v|x=0 = 1

v′ |x=0 = 0

is defined as v(x) = cosx, the cosine function.

There is a theorem that tells us that these u(x) and v(x) are indeed unique
solutions to the differential equations.

6.3 Factorial Function

We want to be able to extend the factorial function to the real numbers. Recall
that we define the factorial of some n ∈N as

n! = n · (n− 1) · (n− 2) · · ·3 · 2 · 1.

To do this, we introduce a new function.
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Definition 62 (Gamma Function). For 0 < x <∞, the Gamma function of
x is defined as

Γ (x) =
∫ x

0
tx−1e−t dt.

The integral converges for x ∈ (0,∞).

Theorem 56. The following are true for Γ (x):

(a) The functional equation

Γ (x+ 1) = xΓ (x)

holds if 0 < x <∞.

(b) Γ (n+ 1) = n! for n = 1,2, . . . .

Proof. (a) follows directly from integration by parts, and since Γ (1) = 1, by
induction, we find (a) =⇒ (b).

Theorem 57 (Bohr-Mollerup Theorem). If f is a positive function on (0,∞)
such that

(1) f (x+ 1) = f (x),

(2) f (1) = 1,

(3) logf is convex,

then f (x) = Γ (x).

Proof. We must show that (1), (2), and (3) uniquely determines the Gamma
function. By (1), it is enough to do this for x ∈ (0,1). Let φ = logf . Then

φ(x+ 1) = φ(x) + logx, (0 < x <∞).

We also have φ(1) = 0 and φ is convex. Suppose x ∈ (0,1) and n ∈ N. Then
φ(n + 1) = log(n!) by above. We consider the difference quotients of φ on the
intervals [n,n+ 1], [n+ 1,n+ 1 + x], [n+ 1,n+ 2]. Since φ is convex,

logn ≤
φ(n+ 1 + x)−φ(n+ 1)

x
≤ log(n+ 1).

We repeatedly apply the φ identity to get

φ(n+ 1 + x) = φ(x) + log[x(x+ 1) · · · (x+n)].
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Hence

0 ≤ φ(x)− log
[

n!nx

x(x+ 1) · · · (x+n)

]
≤ x log

(
1 +

1
n

)
.

Since the latter expression goes to 0 for n→∞, φ(x) is uniquely determined.

As a direct consequence of this proof, we arrive at Euler’s limit definition of
the Gamma function:

Γ (x) = lim
n→∞

n!nx

x(x+ 1) · · · (x+n)
.

Definition 63 (Beta Function). If x > 0 and y > 0, then the Beta function
of x and y is defined as

B(x,y) =
∫ 1

0
tx−1(1− t)y−1 dt =

Γ (x)Γ (y)
Γ (x+ y)

.

If we substitute t = sin2θ, then the have another form of the Beta function:

2
∫ π/2

0
(sinθ)2x−1(cosθ)2y−1 dθ =

Γ (x)Γ (y)
Γ (x+ y)

.

This is one way that we can see that Γ ( 1
2 ) =

√
π; we simply plug in x = y = 1

2
into the Beta function of this form. Likewise, we can do the substitution t = u2

and get another form of the Gamma function:

Γ (x) = 2
∫ ∞

0
u2x−1e−x

2
du, (0 < x <∞).

This gives rise to the well-known so-called Gaussian integral in the case that
x = 1

2 : ∫ ∞
−∞
e−u

2
du =

√
π.
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7.1 Pointwise Convergence

A sequence of functions fn is exactly what it sounds like. More formally, it
means that for all n = 1,2, . . . , we have fn : E→R. For example, consider

fn(x) = xn, x ∈R, n = 1,2, . . . .

This has graph:

Definition 64 (Pointwise Convergence). Suppose we have fn, a sequence
of functions on E. We say fn converges pointwisely to f on E as n→∞ if
and only if for every x0 ∈ E, the sequence of numbers fn(x0) converges to
f (x0). In other words, for all x0 ∈ E, we have fn(x0)→ f (x0).

We usually denote this as either

fn→ f p.w. on E, or p.w. lim
n→∞

fn(x) = f (x).

Consider fn(x) = xn for E = (−1,1). Intuitvely, we should have xn→ 0 p.w. on
E as n→∞. Indeed, fix any x0 ∈ (−1,1). Then |x0| < 1, and so |xn0 | = |x0|n → 0
by properties of sequences. If we changed E = [0,1], then xn 6→ 0 p.w. on E
anymore, because for x0 = 1, xn0 = 1n → 1, as n→∞. In this case, xn → f (x)
p.w. on E, where f (x) is defined by

f (x) =

0, 0 ≤ x < 1

1, x = 1

When x0 = −1, then xn0 = (−1)n is divergent, so xn is pointwise divergent on
[−1,1]. Hence there does not exist an f that fn converges pointwisely to.

Definition 65. Let fn : E→R for n = 1,2, . . . , we say

∞∑
n=1

fn(x) = S(x) p.w. on E.
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In other words, for all x0 ∈ E,

∞∑
n=1

fn(x0) = S(x0).

For example,
∞∑
n=0

xn =
1

1− x
p.w. on (−1,1).

However for all x0 such that |x0| > 1,
∑∞
n=0 x

n
0 diverges because xn0 6→ 0.

Definition 66 (C−norm). Let f : E→R. Then the C−norm of f is

‖f ‖C(E) = sup
x∈E
|f (x)|.

This is also known as the sup-norm or L∞−norm.

Properties of this C−norm:

(1) ‖f ‖C(E) = 0⇐⇒ f (x) = 0, for all x ∈ E

(2) ‖kf ‖C(E) = |k| · ‖f ‖C(E)

(3) ‖f + g‖C(E) ≤ ‖f ‖C(E) + ‖g‖C(E)

(4) For all x ∈ E, |f (x)| ≤ ‖f ‖C(E)

Proof. Proof of (2):

‖kf ‖C(E) = |k| · ‖f ‖C(E) = sup
x∈E
|kf (x)|

= sup
x∈E
{|k| · |f (x)| | x ∈ E}

= |k|sup{|f (x)| | x ∈ E}
= |k| · ‖f ‖C(E)

Proof of (3): Since ‖f + g‖C(E) = sup{|f (x) + g(x)| | x ∈ E}. Notice that

|f (x) + g(x)| ≤ |f (x)|+ |g(x)| ≤ ‖f ‖C(E) + ‖g‖C(E).

These properties are analogous to properties of |x|, for x ∈R.
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7.2 Uniform Convergence

Pointwise convergence does not really tell us much about a function. An-
other form of convergence, uniform convergence, is much more interesting to
study.

Definition 67 (Uniform Convergence). Consider a sequence of functions
fn, where fn : E→R and n = 1,2, . . . . We say fn converges uniformly to f iff

‖fn − f ‖C(E)→ 0, n→∞.

Equivalently,

∀ε > 0, ∃N such that if n ≥N, then ‖fn − f ‖C(E) < ε.

If fn→ f converges uniformly on E, then

∀x0 ∈ E, |fn(x0)− f (x0)| < ‖fn − f ‖C(E)→ 0, n→∞.

This shows us that uniform convergence implies pointwise convergence. The
converse is not true, however. When we compare the ε−definitions of point-
wise and uniform convergence, we can see that they are quite similar.

• Pointwise:

∀x ∈ E, ∀ε > 0, ∃N such that if n ≥N, then |fn(x)− f (x)| < ε.

Here, N is reliant on x and ε.

• Uniform:

∀ε > 0, ∃N such that if n ≥N, then |fn(x)− f (x)| < ε, ∀x ∈ E.

In comparison, N is only reliant on ε.

We can also formulate a Cauchy definition for uniform convergence.

Theorem 58. Let fn : E → R, for n = 1,2, . . . . Then fn converges uniformly to
some f : E→R iff

∀ε > 0, ∃N such that if n,m ≥N, then ‖fn − fm‖C(E) < ε.

Proof. (=⇒) : We have some f : E→ R such that ‖fn − f ‖C(E)→ 0. Then for all
ε > 0, there exists N such that if n ≥ N , then ‖f−n − f ‖C(E) < ε. This implies
that for all ε > 0, there exists N such that for n,m ≥N , we have

‖fn − fm‖C(E) = ‖fn − f + f − fm‖C(E) < ‖fn − f ‖C(E) + ‖f − fm‖C(E) < ε+ ε = 2ε.
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(⇐=) : We first try to find f : E → R. Our assumption tells us that fn is a
Cauchy sequence, and so there exists

lim
n→∞

fn(x0) = Lx0
.

Nowe we have f : E→R and fn→ f pointwisely on E (x→ Lx0
). Now we want

to show that fn→ f uniformly on E. Again, for all ε > 0, we take m→∞, and
so there exists N such that if n,m ≥ N , then for all x, |fn(x)− f (x)| < ε. Hence
‖f −n− f ‖C(E) < ε, and so we conclude that

lim
n→∞
‖fn − f ‖C(E) = 0.

7.3 Properties of Uniform Convergence

Suppose that all fn : E→ R are continuous on E. Let f − n→ f in some sense
on E as n→∞. Is f necessarily continuous on E? For pointwise convergence,
this is not true, but for uniform convergence, this is true.

Theorem 59. Let fn : E → R be continuous on E for n = 1,2, . . . . Let fn → f
uniformly on E as n→∞. Then f is continuous on E.

As a quick note, f being continuous at x0 ∈ E means that

lim
x→x0

f (x) = f (x0).

Thus
lim
x→x0

(
lim
n→∞

fn(x)
)

= lim
n→∞

fn(x0) = lim
n→∞

(
lim
x→x0

fn(x)
)
.

Hence, for pointwise convergence,

lim
x→x0

(
lim
n→∞

fn(x)
)
, lim
n→∞

(
lim
x→x0

fn(x)
)
,

but it is true for uniform convergence.

Proof. Our goal is to show that, fixing any x0 ∈ E,

∀ε > 0, ∃δ > 0 such that if |∆x| ≤ δ, then |f (x0 +∆x)− f (x0)| < ε.

For this ε, uniform convergence implies that there exists N such that ‖fn −
f ‖C(E) < ε. This fn is continuous at x0, so

∃δ such that if |∆x| ≤ δ, then |fN (x0)− fN (x0 +∆x)| < ε.
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Take this δ. Then for |∆x| ≤ δ, we have

|f (x0 +∆x) + f (x0)| = |f (x0 +∆x)− fN (x0 +∆x+ fN (x0 +∆x) + fN (x0)− fN (x0) + f (x0)|
≤ |fN (x0 +∆x)− fN (x0)|+ |f (x0 +∆x)− fN (x0 +∆x)|+ |fN (x0)− f (x0)|
≤ ε+ ε+ ε

= 3ε.

This shows us that fn
unif on E
−−−−−−−→, then for all p ∈ E,

lim
n→∞

fn(p) = f (p).

How does uniform convergence interact with integration or integrable func-
tions?

Theorem 60 (Integrable Limit Theorem). Let fn : [a,b]→ R be Riemann in-
tegrable for all n. Let fn → f uniformly on E. Then f is integrable on [a,b],
and

lim
n→∞

∫ b

a
fn(x)dx =

∫ b

a
lim
n→∞

fn(x)dx.

Proof. For all ε > 0, then there exists Nε such that for n ≥ Nε, and for all
x ∈ [a,b], |fn(x)− f (x)| < ε. Let P be a partition, and Ik = [xk−1,xk], for 1 ≤ k ≤ n.
Then

U (f ,P )−L(f ,P ) =
n∑
k=1

|Ik |
sup
Ik

f − inf
Ik
f

 .
Let J = Ik . Then [

sup
x∈J

f (x)− inf
x∈J
f (x)

]
−
[
sup
x∈J

fn(x)− inf
x∈J
fn(x)

]
.

Because n ≥Nε gives |f (x)− fn(x)| < ε, we have that

f (x) < fn(x) + ε, fn(x)− ε < f (x) =⇒

∣∣∣∣∣∣∣sup
j
f − sup

j
fn

∣∣∣∣∣∣∣ < ε.
So

|U (f ,P )−L(f ,P )− [U (fn, P )−L(fn, P )]| =

∣∣∣∣∣∣∣
n∑
k=1

|Ik |
sup

Ik

f − sup Ikfn

− (inf
Ik
f − inf

Ik
fn

)
∣∣∣∣∣∣∣

≤ 2ε
n∑
k=1

|Ik |

= 2ε(b − a).
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So U (f ,P ) − L(f ,P ) ≤ U (fn, P ) − L(fn, P ) + 2ε(b − a). We choose P such that
U (fn, P )−L(fn, P ) < ε. Hence f is Riemann integrable. Now it follows that∣∣∣∣∣∣

∫ b

a
fn −

∫ b

a
f

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫ b

a
(fn − f )

∣∣∣∣∣∣ ≤
∫ b

a
|fn − f |.

Let ε > 0 be aribtrary. Because fn→ f uniformly, there exists an N such that

|fn(x)− f (x)| < ε/(b − a),

for all n ≥N and x ∈ [a,b]. Thus for n ≥N we have that∣∣∣∣∣∣
∫ b

a
fn −

∫ b

a
f

∣∣∣∣∣∣ ≤
∫ b

a
|fn −−f |

≤
∫ b

a

ε
b − a

= ε.

Uniform convergence is too strong for many important applications. For ex-
ample, consider fn(x) = xn on [0,1]. Then

lim
n→∞

fn(x) =

1, x = 1

0, x , 1
= f (x)

is Riemann integrable. Here we have∫ 1

0
fn(x) =

1
n+ 1

=⇒ lim
n→∞

1
n+ 1

= 0,

and ∫ 1

0
f dx = lim

n→∞

∫ 1

0
fn(x)dx = 0.

But fn does not converge uniformly to f , because ‖xn − f (x)‖C([0,1]) = 1 , 0.
Here we can switch the limit and integral.

Example 10. Let f (x) = tan−1(x). We know that f ′(x) = 1
1+x2 , so∫ 1

0

1
1 + x2 =

π
4
.

We know
1

1 + x2 = 1− x2 + x4 − x6 + · · · = lim
N→∞

N∑
n=0

(−1)nx2n.
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So is it true that∫ 1

0

 lim
N→∞

N∑
n=0

(−1)nx2n

 dx = lim
N→∞

∫ 1

0

N∑
n=1

(−1)nx2n dx

 = lim
N→∞

 ∞∑
n=0

(−1)n

2n+ 1

 .
If so, then we could show that π4 = 1− 1

3 + 1
5 −

1
7 + · · · . However, we can’t use the

Integrable Limit Theorem; Sn(x) =
∑n
j=0(−1)nx2n does not converge uniformly

on [0,1]. This gives us another example of why uniform convergence is too
strong.

Definition 68 (Convergence of Series). We say that
∑∞
n=1 fn(x) converges

uniformly/pointwisely to S(x) iff for the sequence of partial sums,

Sn(x) =
n∑
k=1

fk(x),

we have that Sn→ S uniformly/pointwisely.

We focus on uniform convergence of series. We have many analagous results
to sequences of functions as we do with series:

• C−norm: ∥∥∥∥∥∥∥
n∑
k=1

fn(x)− S(x)

∥∥∥∥∥∥∥
C(E)

→ 0, n→∞.

• Cauchy Criterion:

∀ε > 0, ∃N such that if n,m ≥N, then

∥∥∥∥∥∥∥
m∑
k=n

fk(x)

∥∥∥∥∥∥∥ < ε.
• Divergence Criterion:

∞∑
n=1

an <∞ =⇒ lim
n→∞
|an| = 0.

• Assume
∑∞
k=1 fn(x) converges uniformly on some E to S(x). Then

lim
n→∞
‖fn‖C(E) = 0,

because ‖Sn − S‖C(E)→ 0 and hence ‖Sn+1 − S‖C(E)→ 0.

The last point is because

‖fn‖C(E) = ‖Sn+1−Sn‖C(E) = ‖Sn+1−S+S−Sn‖C(E) ≤ ‖Sn+1−S‖C(E)+‖S−Sn‖C(E)→ 0.
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Theorem 61 (Differential Limit Theorem). Let fn : (a,b)→R be differentiable
for all n. Let f ′n be continuous on (a,b). Suppose that f ′n → g uniformly on (a,b)
for some g : (a,b)→ R, and let there exist p ∈ (a,b) such that fn(p) converges.
Then there exists some f : (a,b)→R such that fn→ f uniformly on (a,b), and
f ′(x) = g(x).

To put it in a different way,

f ′(x) = g(x)⇐⇒ d
dx

(
lim
n→∞

fn(x)
)

= lim
n→∞

(
d
dx
fn(x)

)
.

As we can see, this is just an analagous result for derivatives to the Integrable
Limit Theorem.

Proof. Step 1: We want to show that f ′n continuous implies that f n′ is inte-
grable. By the FTC,

fn(x) = fn(p) +
∫ x

p
f ′n(t)dt.

Then f ′n → g uniformly on (a,b) and f ′n continuous tells us that g is continuous
on (a,b). Then

{integral uniformly conv.} =⇒
∫ x

p
f ′n(t)dt→

∫ x

p
g(t)dt on [p,x].

Now we define f : (a,b)→R by

f (x) = α +
∫ x

p
g(t)dt.

Step 2: g is continuous, and by the FTC,

f ′(x) = 0 +
(∫ x

p
g(t)dt

)′
= g(x).

Step 3: We want to show that fn→ f uniformly on (a,b). To do this, we want
to show that ‖fn − f ‖C(a,b) = supx∈(a,b) |fn(x)− f (x)| → 0, as n→∞. We have

|fn(x)− f (x)| =
∣∣∣∣∣∣fn(p)−α +

∫ x

p
f ′n(t)dt −

∫ x

p
g(t)dt

∣∣∣∣∣∣
≤ |fn(p)−α|+

∣∣∣∣∣∣
∫ x

p
(f ′n(t)− g(t))dt

∣∣∣∣∣∣
≤ |fn(p)−α|+

∫ x

p
|f ′n(t)− g(t)|dt

≤ |fn(p)−α|+
∫ x

p
sup
(a,b)
|f ′n(t)− g(t)|dt

≤ |fn(P )−α|+ ‖f ′n − g‖C((a,b)) · |b − a|
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Hence

sup
x∈(a,b)

|fn(x)− f (x)| ≤ |fn(p)−α|+ ‖f ′n − g‖C((a,b))→ 0, n→∞.

All theorems about uniformly convergent sequences can be reformulated
for series.

Theorem 62. Let fn be integrable on [a,b] for all n. Suppose
∑∞
n=1 fn(x)→ S(x)

uniformly on [a,b]. Then f (x) is integrable on [a,b], and∫ b

a

∞∑
k=1

fk(x)dx =
∞∑
k=1

∫ b

a
fk(x)dx.

Proof. We know that Sn(x)→ f (x) uniformly on [a,b]. By the sequential ver-
sion of the theorem,

lim
n→∞

∫ b

a
fn(x)dx =

∫ b

a
f (x)dx.

Thus

lim
n→∞

∫ b

a

n∑
k=1

fk(x)dx

 = lim
n→∞

 n∑
k=1

∫ b

a
fk(x)dx


=
∞∑
k=1

(∫ b

a
fk(x)dx

)
.

So how do we prove uniform convergence for series?

• Cauchy Criterion:

∀ε > 0, ∃N such that if n,m ≥N, then

∥∥∥∥∥∥∥
m∑
k=n

fk

∥∥∥∥∥∥∥ < ε.
• Weierstrass M-Test

Theorem 63 (Weierstrass M-Test). Let fn : E→ R for all n. Let Mn = supE |fn|,
and

∑∞
k=1Mn <∞. Then

∑∞
n=1 fn(x) converges uniformly on E to some S(x), for

S : E→R.

In other words, this tells us that we can prove uniform convergence of a series
just by showing that

∞∑
n=1

‖fn‖C(E) <∞.
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Proof. Fix ε > 0. We have that there existsN such that for n,m ≥N ,
∑m
k=nMk <

ε. But then for n,m ≥N ,

‖fn + · · ·+ fm‖C(E) = sup
x∈E
|fn(x) + · · ·+ fm(x)|

≤ sup
x∈E
|fn(x)|+ · · ·+ sup

x∈E
|fm(x)|

≤Mn + · · ·+Mm

≤ ε.

Hence the Cauchy Criterion holds for
∑∞
n=1 fn(x).

For example, consider the series

∞∑
n=1

sin(nx)
nα

,

for α > 1. Does this series converge uniformly on R? Yes, because

sup
∣∣∣∣∣sin(nx)
nα

∣∣∣∣∣ ≤ 1
nα
.

By the Weierstrass M-test,
∑∞
n=1

1
nα < ∞ for α > 1, so indeed it is uniformly

convergent.

Definition 69 (L1−norm). Let f : [a,b]→ R be integrable. We define the
L1−norm of f as

‖f ‖1 =
∫ b

a
|f (x)|dx.

Much like the L∞/C−norm, we have the expected few properties:

(1) Triangle Inequality:

‖f + g‖1 =
∫ b

a
|f (x) + g(x)|dx

≤
∫ b

a
|f (x)|+ |g(x)|dx

= ‖f ‖1 + ‖g‖1

(2) Absolutely Homogeneous:

‖cf ‖1 =
∫ b

a
|cf (x)|dx

= |c| · ‖f ‖1
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(3) Positive Definite:

If ‖f ‖1 ≥ 0, then f = 0 =⇒ ‖f ‖1 = 0, but ‖f ‖1 = 0 =⇒ f (x) = 0.

If we consider the space (C([a,b]),‖ · ‖1), all of our properties hold. This shows
us that the space of continuous functions are a subspace of the space of inte-
grable functions.

Definition 70 (L1−convergence). Let fn : [a,b]→R be integrable for all n.

Let f : [a,b]→R be integrable. We say fn
L1

−→ f as n→∞ iff ‖fn−f ‖1→ 0.

As it turns out, uniform convergence implies both L1 and pointwise conver-
gence, but pointwise and L1 convergence don’t imply anything else.

7.4 Weierstrass Approximation Theorem

Theorem 64 (Weierstrass Approximation Theorem). Let f : [a,b]→R be con-
tinuous. Given ε > 0, there exists a polynomial p(x) satisfying, for all x ∈ [a,b],

|f (x)− p(x)| < ε.

Essentially, this tells us that every continuous function in a closed interval
can be uniformly approximated by a polynomial. This may seem obvious for
many smooth functions, but what about a continuous, nowhere differentiable
function? It doesn’t seem possible to come up with a polynomial that approx-
imates this. To further explore this, we need to use a different idea.

Definition 71 (Polygonal Function). A continuous function φ : [a,b]→R

is polygonal if there is a partition

a = x0 < x1 < · · · < xn = b

of [a,b] such that φ is linear on each subinterval [xi−1,xi], for i ∈ [1,n].

Polygonal functions help us define the idea of "linear interpolation". Given a
set of points, we want to find a function whose graph passes through those
points. If we consider the points

(0,1),
(

1
4
,

√
3

2

)
,

(
3
4
,
1
2

)
, (1,0),

then one polygonal function that works is a piecewise function that simply
connects the dots. This is not the only one, however. The function

√
1− x also

works.
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Theorem 65. Let f : [a,b] → R be continuous. Given ε > 0, there exists a
polygonal function φ satisfying, for all x ∈ [a,b],

|f (x)−φ(x)| < ε.

Proof. Since f is continuous on a compact interval, f is uniformly continuous.
Then given ε > 0, there exists δ > 0 such that if |x−y| < δ, we have |f (x)−f (y)| <
ε
2 , for all x ∈ [a,b]. Now choose a = x0 < x1 < · · · < xn = b such that xk+1 − xk < δ
for all k ∈ [0,n− 1]. Let φ be a polygonal function such that φ(xk) = f (xk). For
any interval [xk ,xk+1],

|φ(t)− f (t)| = |φ(t)−φ(xk) +φ(xk)− f (t)|
≤ |φ(t)−φ(xk)|+ |f (xk)− f (t)|
< ε.

We can generalize the Weierstrass Theorem to a be applicable in a broader
variety of situations.

Definition 72 (Algebra). A family A of functions defined on a set E is
said to be an algebra if

(i) f + g ∈ A,

(ii) f g ∈ A,

(iii) cf ∈ A for all f ,g ∈ A and c ∈R.

In abstract algebra lingo, this just means thatA is closed under addition, mul-
tiplication, and scalar multiplication.

Definition 73 (Uniformly Closed). If A has the property that f ∈ A
whenever fn ∈ A for n = 1,2, . . . , and fn → f uniformly on E, then A is
said to be uniformly closed.

If B is the set of all functions which are limits of uniformly convergent se-
quences of members of A, then B is known as the uniform closure of A. As
an example, the set of all polynomials forms an algebra, and we can restate
the Weierstrass Approximation Theorem as saying that C([a,b]) is the uniform
closure of the set of polynomials on [a,b].

Theorem 66. Let B be the uniform closure of an algebra A of bounded func-
tions. Then B is a uniformly closed algebra.
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Proof. If f ,g ∈ B, then there exists uniformly convergent sequences fn and
gn such that fn → f and gn → g, and fn, gn ∈ A. Since these are all bounded
functions, it follows that each of the following uniformly:

fn + gn→ f + g, fng→ f g, cfn→ cf .

Hence f + g ∈ B, f g ∈ B, and cf ∈ B, so B is an algebra.

Definition 74 (Separate Points). Let A be a family of functions on a set
E. Then A is said to separate points on E if to every pair of distinct points
x1,x2 ∈ E, there corresponds a function f ∈ A such that f (x1) , f (x2).

If to each x ∈ E there corresponds a function g ∈ A such that g(x) , 0,
we say that A vanishes at no point of E.

The algebra of all polynomials in one variable always has these properties on
R.

Theorem 67. Suppose A is an algebra of functions on a set E, A separates
points on E, andA vanishes at no point of E. Suppose x1,x2 are distinct points
of E, and c1, c2 are constants, then A contains a function f such that

f (x1) = c1, f (x2) = c2.

Proof. The assumptions show that A contains functions g,h,k such that

g(x1) , g(x2), h(x1) , 0, k(x2) , 0.

Let
u = gk − g(x1)k, v = gh− g(x2)h.

Then evidently, u,v ∈ A, and u(x1) = v(x2) = 0, u(x2) , 0, and v(x1) , 0. Thus

f =
c1v
v(x1)

+
c2u
u(x2)

will have our desired properties.

Theorem 68 (Stone-Weierstrass Theorem). Let A be an algebra of real con-
tinuous functions on a compact set K . If A separates points on K and if A
vanishes at no point of K , then the uniform closure B of A consists of all real
continuous functions on K .
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Theorem 69. Assume
∑∞
n=0 cnx

n converges for x = p. Then for all δ > 0,∑∞
n=0 cnx

n converges uniformly on |x| ≤ |p| − δ. In other words, for all x ∈
[−|p|+ δ, |p| − δ].

Proof. Following the same procedure as the theorem above, we bound |cn||p|n
from above by some N <∞. Then

sup |cn||p|n
(
|x|
|p|

)n
=N sup

(
|x|
|p|

)n
≤N

(
|p| − δ
|p|

)n
=N

(
1− δ
|p|

)n
Then because |1− δ

|p| | < 1, the series
∑∞
n=0N (1− δ

|p| )
n <∞, and so by the Weier-

strass M-test, it is uniformly convergent.

Theorem 70 (Abel’s Theorem). For any
∑∞
n=0 cnx

n, there exists some R ∈ [0,∞)
such that

(a)
∑∞
n=0 cnx

n converges absolutely for all x : |x| < R,

(b)
∑∞
n=0 cnx

n diverges for all x : |x| > R,

(c) No information in general about |x| = R,

(d) For all 0 < ρ < R,
∑∞
n=0 cnx

n converges uniformly on [−ρ,ρ].

Proof. R is defined to be {|x| :
∑∞
n=0 cnx

n converges}, and this will be nonempty
because 0 is a possibility for R.

(a) Follows from Theorem above.

(b) If it converges for p, and |x| > R, then this contradicts the definition of R.

(c) Consider
∑∞
n=0

xn
n .
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(d) Follows from Theorem above.

8.1 Analyticity and Properties

We can indeed calculate thisR using a formula derived from complex analysis.

Theorem 71 (Cauchy-Hadamard Formula). Given a series
∑∞
n=0 cnx

n, we can
calculate R using the formula

R−1 = limsup
n→∞

(
n
√
|cn|

)
.

Definition 75 (Radius of Convergence). Given a series
∑∞
n=0 cnx

n, we call
such an R the radius of convergence of our series. Similarly, we call the
interval (−R,R) the interval of convergence.

In general, we can extend Abel’s Theorem to complex numbers as well. For
z = x + iy, the series

∑∞
n=0 cnz

n converges absolutely for all z : |z| < |p|, and
uniformly on E = {z : |z| ≤ |p| − δ}, for any δ > 0. The reason is because

∑∞
n=0 z

n

converges if |z| < 1, even if z ∈C.

Definition 76 (Real-Analytic). If f (x) =
∑∞
n=0 cnx

n, with some radius of
convergence R > 0, then f is called real-analytic (or simply just analytic)
in (−R,R).

The set of all analytic functions on an interval of convergence is denoted

Cω[(−R,R)] = {f : (−R,R)→R | f is analytic in (−R,R)}.

Obviously, we can integrate analytic functions term-by-term, so∫ b

a
f (x)dx

exists, and we can calculate it to be∫ b

a

 ∞∑
n=0

cnx
n

 dx =
∞∑
n=0

∫ b

a
cnx

n dx =
∞∑
n=0

bn+1 − an+1

n+ 1
cn.

Can we also differentiate term-by-term for analytic functions?
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Theorem 72. Let f (x) =
∑∞
n=0 cnx

n, convergent in (−R,R) for R > 0. Then

(1) There exists f ′(x) for all x ∈ (−R,R), and

f ′(x) =
d
dx

 ∞∑
n=0

cnx
n

 =
∞∑
n=0

ncnx
n−1,

(2) f ′ is analytic in (−R,R),

(3) There exists f (k)(x) for all x ∈ (−R,R) and k = 1,2, . . . , and

f (k)(x) =
∞∑
n=k

(cnx
n)(k) .

Proof. We have that (1) =⇒ (2) and (3) at once. So we only have to prove (1).
Fix some x ∈ (−R,R). We need to show that

∑∞
n=0 f

′
n converges uniformly on

(a,b). We use the M − test. For ρ < a < R,
∑∞
n=0 |cnxn| <∞, and |x||a| < 1. For all

x ∈ [−ρ,ρ],

∞∑
n=0

|ncnxn−1| ≤
∞∑
n=0

sup
[−ρ,ρ]

|ncnxn−1|

=
∞∑
n=1

n|cn|ρn−1

=
∞∑
n=1

|cnρn| ·
n
a
·
|ρ|n−1

|a|n−1

≤
∞∑
n=1

|cnpn| · k

<∞.

This is because

1
a
·n ·
|ρ|n−1

|a|n−1 =
1
a
·n(1− δ)n−1 =

1
a

n

(1 + ε)n+1 → 0, n→∞.

Using this theorem, we can notice a few things:

• If f ∈ Cω((−R,R)), then all derivatives exist in (−R,R), and so f ∈ C∞((−R,R))
as well.

• Cω((−R,R)) is a vector space.
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• We can calculate any coefficient of f (x) by taking

cn =
f (n)(0)
n!

.

This begs the question: does Cω((−R,R)) ⊆ C∞((−R,R)), or is it a strict sub-
space?

Example 11. Let

f (x) =

e−1/x, x > 0

0, x ≤ 0
.

Notice that f < Cω((−R,R)). However, we claim that f ∈ C∞((−R,R)). Notice
that

lim
x→0+

f (x)− f (0)
x

= lim
x→0+

f (x)
x

= lim
x→0+

e−1/x

x
.

Let t = 1/x. Then
lim
t→∞

e−tt = lim
t→∞

t
et

= 0,

so f ′(x) = e−1/x · 1
x2 . For the second derivative, we will find that

lim
x→0+

f ′(x)− f ′(0)
x

= lim
x→0+

e−1/xpx

(1
x

)
= lim
t→∞

px(t)
et
→ 0.

This holds for the nth derivative, because the exponential will always grow
faster than a power.

From this, we can see that Cω((−R,R)) ⊂ C∞((−R,R)), a strict subset.

8.2 Analyticity Criterion

Recall Taylor’s Formula. We want to exmaine behavior of Rn(f ,x).

• First, we fix n and let x→ 0. Then

f (x) =

 ∞∑
k=0

f (k)(0)
k!

xk
+ terms bounded by xn+1 = |Rn(x)|.

Indeed,

|Rn(x)| = 1
n!

∣∣∣∣∣∫ x

0
(x − t)nf (n+1)(t)dt

∣∣∣∣∣
≤ 1
n!

∫ x

0
|x − t|n|f (n+1)(t)|dt

≤
‖f (n+1)‖C([−R/2,R/2])

n!
· |x|n · |x|

= k|x|n+1.
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• Now we fix x0, or equivalently, let x ∈ [−ε,ε] ⊂ (−R,R). If Rn(f ,x0)→ 0
as n→∞, then

f (x0) =
n∑
k=0

f (k)(0)
k!

xk +Rn(f ,x0) −→
∞∑
k=0

f (k)(0)
k!

xk ,

which is convergent. Thus if Rn(f ,x0)→ 0 as n→ ∞, then for all x0 ∈
(−ε,ε), f (x) =

∑∞
k=0

f (k)(0)
k! xk . Thus f is analytic.

Using this, we can find an easier way to determine if a function is analytic.

Theorem 73 (Analyticity Criterion). Let f ∈ C∞((−R,R)), and suppose there
exists M <∞ such that for all n,

‖f (n)‖C((−R,R) = sup
|x|<R
|f (n)(x)| ≤Mn.

Then

f (x) =
∞∑
k=0

f ′(k)
k!

xk , ∀|x| < R.

Proof. By Taylor’s Formula,

f (x) =
n∑
k=0

f (k)(0)
k!

xk +
1
n!

∫ x

0
(x − t)nf (n+1)(t)dt.

Let the second term be |In|. Then

|In| ≤
1
n!
rn

∫ x

0
|f (n+1)(t)|dt

≤ r
n

n!
Mn+1 · r

=
(rM)n

n!
· rM

=
kn

n!
→ 0, n→∞.

Now we wish to examine analyticity of common elementary functions.

• Consider f (x) = ex. We know (ex)(n) = ex, for all n. Then

ex =
n∑
k=0

xk

k!
+
∣∣∣∣∣ 1
n!

∫ x

0
(x − t)net dt

∣∣∣∣∣ ,
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We take n→∞, and apply the criterion for [−R,R]. Thus

sup
|x|≤R
|Rn(x)| ≤ sup

|x|≤R

1
n!

∫ x

0
|x − t|net dt

≤ 1
n!
Rn+1eR

≤ (eRR)Rn

= k ·Mn

Thus by the criterion,

ex =
∞∑
n=0

xn

n!
, ∀x : |x| ≤ R <∞.

• Consider now g(x) = ln(1 + x). By induction, for x ∈ (−1,1),

(ln(1 + x))(n)
∣∣∣∣∣
x=0

= (−1)n+1(n− 1)!

Then

ln(1 + x) =
n∑
k=0

(−1)k+1(k − 1)!
k!

· xk +
1
n!

∫ x

0
(x − t)n (−1)nn!

(1 + t)n+1 dt.

So

Rn(x) =
∫ x

0

(x − t)n

(1 + t)n
dt

1 + t
.

Fix any x ∈ (−1,1), |x| = 1− δ,δ > 0. Then |Rn(x)| → 0 as n→∞, and so

ln(1 + x) =
∞∑
n=0

(−1)n
xn

n
, ∀x : |x| < 1.

8.3 Asymptotic Analysis

Definition 77 (Small-o Notation). Suppose f and g are always defined in
some (a−R,a+R) and are not zero for x , 0. Then we say f (x) = o(g(x)) as
x→ a if f (x)

g(x) → 0, as x→ a.

This is basically saying that f vanishes much faster than g does. Some exam-
ples:

• x2 = o(x), x→ 0⇐⇒ x2

x = x→ 0.

• x = o(x2), x→∞⇐⇒ x
x2 = 1

x → 0.
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• 1
x = o( 1

x2 ), x→ 0⇐⇒ 1/x
1/x2 = x→ 0.

• If f (x) = o(1) as x→ a, then limx→a f (x) = 0.

We can also reformulate some definitions using o notation.

• Continuity at x0:
f (x) = f (x0) + o(1), x→ x0.

• Differentiability at x0:

f (x) = f (x0) + f ′(x0)(x − x0) + o(x − x0), x→ x0.

Definition 78 (Big-O Notation). Suppose f and g are always defined in
some (a−ε,a+ε) for ε > 0. Then we say f (x) = O(g(x)) if there exists some
C <∞ such that |f (x)| ≤ C|g(x)|, for all x ∈ (a− ε,a+ ε), and x , a.

Theorem 74. If f (x) = o(g(x)) as x→ a, then f (x) = O(g(x)) as x→ a.

Proof. If |f (x)|
|g(x)| → 0 as x→ a, then |f (x)|

|g(x)| ≤ 1 in some (a−δ,a+δ), δ > 0 and x , a.
It follows that |f | ≤ |g | near a, and so f = O(g(x)) as x→ a.

For the case of powers, we have that

• xm = o(xn), x→ 0⇐⇒m > n,

• xm = O(xn), x→ 0⇐⇒m ≥ n,

• f (x) = O(xn), x→ 0⇐⇒ f (x) = o(xm), x→ 0 for m > n.

We just say for m > n, O(xn) = o(xm), x→ 0. We have many other properties of
small-o notation:

• If f (x) = o(g) as x→ a, then h(x)f (x) = o(hg), as x→ a.

• If f ,g = o(h) as x→ a, then f + g = o(h), as x→ a.

• If f (x) = o(g) and h(x) = o(k) as x→ a, then f h = o(gk), as x→ a.

• xmo(xn) = o(xm+n), as x→ 0.

• o(xn) + o(xn) = o(xn), as x→ 0.

• o(xn) + o(xm) = o(xm+n), as x→ 0.

Informally, we can state the first three these facts in a simpler way:
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• ho(g) = o(hg) as x→ a,

• o(h) + o(h) = o(h), as x→ a,

• o(g) · o(k) = o(gk), as x→ a.

However, be careful about certain properties. Not everything acts the way we
expect it to. Consider f = o(g) and h = o(k) as x→ a. This does NOT imply in
general that

f + h = o(g + k), x→ a,

or in other words, o(g) + o(k) , o(g + k), as x→ a. Still, for m > n,

o(xm) = o(xn) = o(xn) + o(xn) = o(xn), x→ 0,

and thus
o(xm) + o(xn) = o(xmin{m,n}), x→ 0.

Example 12. Prove that O(g) · o(f ) = o(f g), as x→ a.

Proof. Let F1 = O(g) as x → a and F2 = o(f ) as x → a. Then F1F2 = o(f g) as
x→ a. Indeed,

F1F2

f g
=

∣∣∣∣∣F1

g

∣∣∣∣∣ · ∣∣∣∣∣F2

f

∣∣∣∣∣→ 0, x→ a.

Example 13. Prove that if f = o(g) as x → 0, and g = o(xn) as x → 0, then
f = o(xn) as x→ 0.

Proof. We have
f

xn
=
f

g
·
g

xn
→ 0, x→ 0.

Another two important properties are as follows (prove it!):

• o(o(xn)) = o(xn), as x→ 0,

• O(o(xn)) = o(xn), as x→ 0.
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8.4 Applications of Asymptotics

For the Taylor Polynomial, we claim that R(x) = O(xn+1). This is because

|R(x)| ≤
∣∣∣∣∣ 1
n!

∫ x

0
(x − t)nf (n+1)(t)dt

∣∣∣∣∣ ≤ 1
n!

∫ x

0
|x − t|n|f (n+1)(t)|dt

≤
‖f ‖C([−R/2,R/2])

n!
|x|n+1, ∀x ∈ [−R/2,R/2].

Then because f (n+1) exists and is continuous near 0,

f (x) =
n∑
k=0

f (k)(0)
k!

xk + o(xn), x→ 0,

because O(xn+1) = o(xn), x → 0. We can also represent power series using
asymptotics.

(a) Exponential:

ex = 1 + x+
x2

2!
+ · · ·+ x

n

n!
+ o(xn), x→ 0.

(b) Sine:

sinx = x − x
3

3!
+
x5

5!
− · · ·+ (−1)n

(2n+ 1)!
x2n+1 + o(x2n+2), x→ 0.

(c) Cosine:

cosx = 1− x
2

2!
+
x4

4!
− · · ·+ (−1)n

(2n)!
x2n + o(x2n+1), x→ 0.

(d) Logarithm:

ln(1 + x) = x − x
2

2
+
x3

3
− · · ·+ (−1)n+1

n
xn + o(xn), x→ 0.

(e) Binomial:

(1 + x)α =
N∑
n=0

Cnαx
n + o(xN ), x→ 0.

Here, α <N, and

Cnα =
α(α − 1) · · · (α −n+ 1)

n!
, C0

α = 1.
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This gives us, for example, that

1
1 + x

= (1 + x)−1 = 1− x+ x2 − · · ·+ (−1)nxn + o(xn), x→ 0.

Theorem 75. Assume that in a neighborhood of 0 we have

a0 + a1x+ · · ·+ aNxN + o(xN ) ≡ b0 + b1x+ · · ·+ bNxN + o(xN ).

Then ai = bi , for all i.

Using this theorem, we can do computations that would otherwise be very
cumbersome.

Example 14. Compute tan(5)(x)
∣∣∣∣∣
x=0
.

Solution. Since we are always near 0, o(· · · ) will all be x→ 0. Then

tanx =
sinx
cosx

=
x − x3

3! + · · ·+ o(x6)

1− x2

2! + · · ·+ o(x5)
= ax+ bx3 + cx5 + o(x5).

Notice that
x − x3

3! + · · ·+ o(x6)

1− x2

2! + · · ·+ o(x5)
=
x − x3

3! + · · ·+ o(x6)

1− [ x
2

2! + · · ·+ o(x5)]
,

and so we can use the expansion for 1
1−x . Let

[· · · ] =
[
x2

2!
− x

4

4!
+ · · ·

]
.

Then

tanx =
[
x − x

3

3!
+
x5

5!
+ o(x6)

][
1 + [· · · ] + [· · · ]2 + · · ·

]
The second term will be equal to[

1− x
2

4
+
x4

24
+ · · ·

][
1 +

x4

4
+ · · ·

]
=

(
1 +

x2

4
+

5x4

24
+ o(x5)

)
.

Thus we can multiply our two infinite sums together, disregarding any terms
that are above the sixth power, and so

tanx = x+
1
3
x3 +

2
15
x5 + o(x6).

Hence we conclude that

tan(5)(x)
∣∣∣∣∣
x=0

= 5! · 2
15

= 16 .
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Example 15. Suppose now that we wanted to find

arcsin(5)(x)
∣∣∣∣∣
x=0
.

Solution. We can do this in two different ways.

• Method 1: Notice that arcsine is odd, and by Taylor,

arcsinx = x+ ax3 + bx5 + o(x5).

Our goal is to find b. Then we can take the sine of both sides to get

x = sin(arcsinx) = sin(x+ ax3 + bx5 + o(x5)).

Hence we use the sine expansion to calculate our derivative:

sin t = (x+ ax3 + bx5 + o(x5)) +
(x+ ax3 + bx5 + o(x5))3

3!
+ · · ·

However, this is a long and arduous task involving many calculations.
Is there a simpler way to do this?

• Method 2: We take the derivative of arcsine first. This gives us

(arcsinx)′ =
1

√
1− x2

= (1− x2)−1/2 = 1 + ax2 + bx4 + o(x4),

because the function is even. Then

arcsin(5)(x)
∣∣∣∣∣
x=0

=
(
(1− x2)−1/2

)(4)
∣∣∣∣∣
x=0

Now we use the Binomial expansion with α = −1/2 and do a substitution
of t = (−x)2, so that o(t2) = o(x4), and so

(1− x2)−1/2 = 1 +−1
2
· −x2 +

1
2!
· 1

2
· 3

2
x4 + o(x4) = 1 +

1
2
x2 +

3
8
x4 + o(x4).

Then we conclude that

arcsin(5)(x)
∣∣∣∣∣
x=0

=
3
8
· 4! = 9 .

We can also compute seemingly impossible limits using asymptotic analy-
sis as well. Take the limit

lim
x→2

(√
3− x+ ln(x/2)

)1/ sin2(x−2)
.

This gives us the indeterminate 1∞ when we plug in 0. We can’t seem to use
traditional methods, such as L’Hôpital’s Rule, to solve this limit.
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Theorem 76. If
bxn + o(xn)
axn + o(xn)

, x→ 0,

and a , 0, then

lim
x→0

bxn + o(xn)
axn + o(xn)

=
b+ o(1)
a+ o(1)

=
b
a
.

Example 16. Solve

lim
x→2

(√
3− x+ ln(x/2)

)1/ sin2(x−2)
.

Solution. We first do a change of variables through z = x−2. The limit becomes

L = lim
z→0

(√
1− z+ ln

(z+ 2
2

))1/ sin2 z

Consider lnL, which is

lnL = lim
z→0

ln(
√

1− z+ ln(1 + z
2 ))

sin2 z

First we examine the denominator. We want to write sin2 z = azn + o(zn).
Hence, we can see that

sin2 z = z2 + o(z2)

Next we examine the numerator. We can expand
√

1− z as

√
1− z = 1− 1

2
z − 1

8
z2 + o(z2)

We know that ln(1 + z
2 ) can be expanded through its formula:

ln
(
1 +

z
2

)
=

1
2
z − 1

8
z2 + o(z2)

So
√

1− z+ ln(1 + z
2 ) = 1− 1

4z
2 + o(z2). Then using the ln expansion again,

ln
(√

1− z+ ln
(
1 +

z
2

))
= −1

4
z2 + o(z2)

Finally, our limit turns into the following expression, which we can easily
evalute:

lim
z→0

−1
4z

2 + o(z2)

z2 + o(z2)
= −1

4

Then L = elnL, and so

lnL = −1
4

=⇒ L = e−
1
4



9Analysis in Metric Spaces

9.1 Introduction

We apply uniform convergence with integration and differentiation to fn(x) =
cnx

n and
∑∞
n=0 fn(x) =

∑∞
n=0 cnx

n = c0 + c1x + c2x
2 + · · · . Each cnxn is infinitely

differentiable at all x. What about
∑∞
n=0 cnx

n?

Theorem 77. Assume
∑∞
n=0 cnx

n converges for x = p. Then
∑∞
n=0 cnx

n con-
verges for all x such that |x| < |p|. In other words, for all x ∈ (−|p|, |p|).

This doesn’t tell us anything about |x| = |p|, however. If we consider
∑∞
n=1

xn
n

at x = −1, then this is the alternating harmonic series, which converges, but if
we consider it at x = 1, it will be the harmonic series, which diverges.

Proof. The key fact that we use is that
∑∞
n=0 q

n converges absolutely for |q| < 1,
and

∑∞
n=1 q

n = 1
1−q .

For x = 0, we get that c0 + c1x+ c2x
2 + · · · = c0, and so it converges.

For x , 0, consider
∑∞
n=0 |cn||x|n. We know that convergence at p implies that

cnp
n→ 0, and so |cn||p|n→ 0 as well. So

∞∑
n=0

|cn||x|n =
∞∑
n=0

|cn||p|n ·
|x|n

|p|n

≤M
∞∑
n=0

(
|x|
|p|

)n
<∞,

provided that |x||p| < 1, or equivalently |x| < |p|. Thus for all x such that |x| < |p|,
our series converges absolutely.

Up until now, we have studied f : E→R for E ⊂R. Now we want to study
f (x1, . . . ,xn) and E ⊂R

n, such that f : E→R
m.

9.2 Metric and Normed Spaces
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Definition 79 (Metric Spaces). A metric space (M,d) is an ordered pair
where M is a set and d, the distance function, is a function d :M ×M→R

that satisfies the following properties:

(a) Non-negativity:

d(x,y) ≥ 0, ∀x,y and d(x,y) = 0⇐⇒ x = y.

(b) Symmetry:
d(x,y) = d(y,x), ∀x,y.

(c) Triangle Inequality:

d(x,y) ≤ d(x,z) + d(y,z).

In R, d(x,y) = |x − y|.

Definition 80 (Ball). An open ball, Br (a), is a ball centered at awith radius
r > a, defined by

Br (a) = {x ∈M | d(a, r) < r}.

A closed ball is defined similarly:

Br (a) = {x ∈M | d(a, r) ≤ r}.

Definition 81 (Normed Space). A normed space is an ordered pair (V ,‖·‖),
where V is a vector space, and ‖ · ‖, the norm, is a function ‖ · ‖ : V → R

that satisfies the following properties:

(a) Positive-Definitive:
‖x‖ = 0⇐⇒ x = 0V .

(b) Absolutely Homogeneous/Scalable:

‖αx‖ = |α| · ‖x‖, ∀α ∈R, ∀x ∈ V .

(c) Triangle Inequality:

‖x+ y‖ ≤ ‖x‖+ ‖y‖, ∀x,y.

Observe that (V ,‖ · ‖) is a metric space where d(u,v) = ‖u − v‖. Indeed,

d(x,y) = ‖x − y‖ = ‖(x − z) + (z − y)‖ ≤ ‖x − z‖+ ‖z − y‖ = d(x,z) + d(z,y).
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Some more examples:

• In R
n, if (V ,‖ · ‖) is a normed space, and S ⊂ V is a subset but not nec-

essarily a subspace. then (S,d), where d(x,y) = ‖x − y‖ is also a metric
space.

• If E is any set, define the vector space

B(E) =
{
f : E→R | sup

E
|f | <∞

}
.

Then (B(E),‖ · ‖C(E)) is a normed space of infinite dimensions.

• For [a,b] ∈ R, C([a,b]) is an infinite-dimensional vector space, and then
(C([a,b]),‖ · ‖1) is a normed space.

Definition 82 (Lp−norm). For some p ∈ R, we define the Lp−norm of x is
defined by

‖x‖p = (|x1|p + |x2|p + · · ·+ |xn|p)1/p.

The importance of normed spaces in R
n is that ‖x‖p is a norm on R

n for all
1 ≤ p <∞, including∞, and that (Rn,‖ · ‖p) is a metric space for all 1 ≤ p <∞,
including∞. We mainly focus on three Lp−norms:

(1) The L1−norm:

‖x‖1 = |x1|+ · · ·+ |xn|, x ∈Rn, x = (x1, . . . ,xn).

(2) The L2−norm:
‖x‖2 =

√
|x1|2 + · · ·+ |xn|2.

(3) The L∞−norm:
‖x‖∞ = max

i=1,...,n
|xi |.

Each of these norms, as expected, follow the triangle inequality:

• p = 1 :

‖x+ y‖1 = ‖x1 + y1‖+ · · ·+ ‖xn + yn‖
≤ ‖x1‖+ ‖y1‖+ · · ·
= ‖x‖1 + ‖y‖1
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• p =∞ :

‖x+ y‖∞ = max
i=1,...,n

(‖xi + yi‖)

≤ max
i=1,...,n

(‖xi‖+ ‖yi‖)

≤ max
i=1,...,n

‖xi‖+ max
i=1,...,n

‖yi‖

= ‖x‖∞ + ‖y‖∞

• p = 2: We introduce
x · y = x1y1 + · · ·+ xnyn

as the inner product. Then we define ‖x‖2 =
√
x · x. Finally, we use

Cauchy-Schwartz:
‖x · y‖ ≤ ‖x‖2‖y‖2.

Hence

{metric spaces} ⊂ {normed vector spaces} ⊂ {spaces of Rn with ‖ · ‖p}

9.3 Sequences in Metric Spaces

Definition 83 (Sequence). Let (M,d) be a metric space. A sequence in M
is any x : N→M, denoted xn. Then we say that

lim
n→∞

xn→ L,

iff
∀ε > 0, ∃N such that for all n ≥N, d(xn,L) < ε.

This is equivalent to saying

∀ε > 0, ∃N such that for all n ≥N, xn ∈ Bε(L).

Theorem 78. If the limit to a sequence exists in (M,d), then it is unique.

Proof. Assume that there exists two limits L1,L2 such that L1 , L2. Then
d(L1,L2) = R > 0. We claim that BR/10(L1) ∩ BR/10(L2) = ∅. Suppose to the
contrary that there exists a point in both balls. Then by the Triangle Inequal-
ity,

d(L1,L2) ≤ d(L1,p) + d(L2,p)

≤ R
10

+
R
10

=
R
5
< R.
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Let ε = R/10 > 0. Then

∃N1 : n ≥N1 =⇒ xn ∈ BR/10(L1), ∃N2 : n ≥N2 =⇒ xn ∈ BR/10(L2).

Take n0 ≥ N1,N2. Then xn0
∈ BR/10(L1,2), a contradiction, since BR/10(L1) ∩

BR/10(L2) = ∅. This completes our proof.

Definition 84 (Bounded Set). Let (M,d) be a metric space, and S ⊂ M.
Then S is bounded if S ⊂ BR(a) for some R <∞, a ∈M.

Theorem 79. If xn converges in (M,d), then xn is bounded in (M,d).

Proof. Fix ε = 1. Let limx→∞ xn = L ∈M. By definition of d(xn,L)→ 0 means
that there exists some N such taht for n ≥N , xn ∈ B1(L). Let

R = max{1,d(L,x1),d(L,x2), . . . ,d(L,xn)} ,∞.

Then for all n, xn ∈ BR(L).

Theorem 80. (a) For all x ∈Rn,

‖x‖0 ≤ ‖x‖1 ≤
√
N‖x‖2 ≤N‖x‖0.

(b) Let xn be a sequence in R
n defined as

xn =


x1n
x2n
...

xNn

 .
Then

|xn − p|0→ 0⇐⇒ {xjn → pj , n→∞, ∀j ∈ [1,N ]}.

(c) xn converges in ‖ · ‖0 iff it converges in ‖ · ‖1 iff it converges in ‖ · ‖2.

Proof. We have that (1) =⇒ (3) at once.
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9.4 Compact Metric Spaces

Theorem 81. Let (M,d) be a metric space, and K ⊂M. Then the following are
equivalent:

(i) Every open cover of K has a finite subcover.

(ii) For all S ⊂ K , where |S | is countable, there exists a limit point p ∈ K .
(called limit point compactness)

(iii) For all xn, for xn ∈ K for all n, there exists a subsequence ym = xnm such
that ym→ a and a ∈ K . (called sequential compactness)

As a corollary, if (M,d) is a metric space, and K is compact, then K is closed
and bounded. Unlike in R, the converse is NOT necessarily true in general
metric spaces!

Now we want to study the normed space (C(K),‖ · ‖C(K)). We know:

• fn→ f in C(K) iff fn→ f uniformly on K ,

• fn→ f inC(K) iff ‖fn−f ‖C(K)→ 0 iff ∀ε > 0,∃N such that if n,m ≥N ,then
‖fn − fm‖C(K) < ε. (Cauchy Criterion)

Before, for K = E ⊂R, these did not require that K be compact.

Theorem 82. Let (M,d) be a metric space, and K ⊂ M be compact. Let f ∈
C(K). Then

(i) supK |f | <∞, so ‖f ‖C(K) <∞.

(ii) There exists x∗ ∈ K such that f (x∗) = supK f , and there exists y∗ ∈ K such
that f (y∗) = infK f .

In particular, if K is compact and f is continuous on K , then supf = maxf
and inff = minf .

Proof. (i) Suppose to the contrary that supK |f | =∞. Then there exists some
xn ∈ K such that |f (xn)| → ∞. By sequential compactness, we find ym =
xnm , a subsequence such that ym→ p ∈ K . On one hand, |f (ym)| →∞. On
the other hand, f is continuous at p, so f (yn)→ f (p) ∈R, a contradiction.

Definition 85 (Pointwise Bounded). We say that a sequence of functions
fn : E→ R is pointwise bounded on E if the sequence fn(x) is bounded for
every x ∈ E. That is, if there exists a finite-valued function φ defined on
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E such that
|fn(x)| < φ(x), x ∈ E,n = 1,2, . . . .

Definition 86 (Uniform Bounded). We say that a family of sets F =
{fα}α∈R is uniformly bounded if there exists C <∞ such that

sup
K
|fα | = max

K
|fα | ≤ C, ∀α ∈ A.

Definition 87 (Equicontinuity). We say that a family of sets F = {fα}α∈R
is equicontinuous if

∀ε > 0, ∃δ such that if d(x,y) ≤ δ, α ∈ A, then |fα(x)− fα(y)| < ε.

Example 17. Let A be a bounded subset of C([0,1]). Prove that the set of
functions

F(x) =
∫ x

0
f (t)dt, f ∈ A,

is equicontinuous in C([0,1]).

Proof. Denote

F =
{∫ x

0
f (t)dt | f ∈ A

}
.

We choose M > 0 such that for each f ∈ A, we have ‖f ‖∞ ≤M. Given ε > 0, we
let δ = ε/M. Then whenever x,y ∈ [0,1] are such that |x − y| < δ and f ∈ A, it
follows that∣∣∣∣∣∫ x

0
f (t)dt −

∫ y

0
f (t)dt

∣∣∣∣∣ =

∣∣∣∣∣∣
∫ x

y
f (t)dt

∣∣∣∣∣∣ ≤M |x − y| <Mδ = ε.

Hence we conclude that F is equicontinuous.

Example 18. Prove that the sequence of functions sin(nx) for n ≥ 1 is not
equicontinuous in C([0,1]).

Proof. Suppose to the contrary that this sequence is equicontinuous. In par-
ticular, there exists some δ so that for any n and x,y ∈R with |x − y| < δ,

|sinnx − sinny| < 1.

Let n be large enough so that π/2n < δ. Then |π/2n− 0| < δ, yet

|sin(n ·π/2n)− sin(n · 0)| = 1,

a contradiction. Hence this family of functions is not equicontinuous.
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Theorem 83 (Arzelà-Ascoli Theorem). Let (M,d) be a metric space, and let
K ⊂M be compact. Suppose F = {fα}α∈R is a family of continuous functions;
that is, F ⊂ C(K). Then F is compact if and only if F is uniformly bounded
and equicontinuous.

While this is easy to state, this version of the Arzelà-Ascoli Theorem is dif-
ficult to prove. Instead, we reformulate the theorem into an equivalent, but
different, way. To do this, we must introduce a new notion of compactness.

Definition 88 (Precompactness). Let (M,d) be a metric space. We say
S ⊂M is precompact iff S is compact.

This is a "weaker" form of compactness, as it gives us the condition that S
must be closed. Some other notes:

• Formally, S is precompact iff for all xn ∈ S, there exists a subsequence
ym = xnm that converges to some p ∈M. Notice that p < S is possible.

• IfM = C(E), and d(f ,g) = ‖f −g‖C(E), then we have the Cauchy Criterion:
fn converges in ‖ · ‖C(E) iff fn is Cauchy. Hence S ∈ C(E) is precompact iff
for all fn ∈ S, there exists a Cauchy subsequence gm = fnm such that

∀ε > 0, ∃N such that for n,m ≥N, we have ‖gm − gn‖C(E) < ε.

Now we can restate Arzelà-Ascoli using this idea.

Theorem 84 (Arzelà-Ascoli Theorem Version 2). Let (M,d) be a metric space,
andlet K ⊂ M be compact. Suppose F = {fα}α∈R is a family of continuous
functions; that is, F ⊂ C(K). Then F is precompact if and only if F is bounded
in ‖ · ‖C(K) and is equicontinuous.



10Differentiability in R
n

10.1 Introduction

Definition 89 (Multivariable Differentiability). Let Ω ⊂R
n be open, and

f : Ω→ R
m be a function. Let p ∈ Ω. We say f is differentiable at p iff

there exists A : Rm → R
n, a linear matrix (that is, an m × n matrix), such

that

f (p+ h) = f (p) +Ah+R(h),
|R(h)|2
|h|2

→ 0, as h→ 0.

We use the notation

A ∈Hom(Rn,Rm) = Hom(Rm,Rn)

to denote the set of all such matrices. Recall from linear algebra that the
set of all linear transformations from two vector spaces V and W is denoted
L(V ,W ). Indeed, by definition,

Hom(Rn,Rm) = L(Rn,Rm) =Mn×m.

We claim that this A is always unique.

Proof. Suppose thatA and B both satisfy the definition. Then (A−B)h = R1(h)+
R2(h). Let

A−B = C =


c11 · · · c1m
...

. . .
...

cn1 · · · cnm

 .
Assume, say c11 , 0. Take

h =


t
0
...
0

 .
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Then

(A−B)h =


c11t

0
...
0

 = R1(h) +R2(h) =⇒


c11
0
...
0

 =
R1(te1) +R2(te2)

t
→ 0,

by assumption. Thus c11 = 0, a contradiction.

Definition 90 (Differential). We call such an A in the definition of differ-
entiability the differential of f at p, denoted

dfp ∈Hom(Rn,Rm).

There are many notations for this, including

A =Dfp = dfp = f ′p = f∗,p.

Much like in one variable, differentiability at p will always imply continuity
at p as well. Much like in a single variable, we have many expected properties:

• If dfp and dgp exist, and f ,g : Ω→R
m, then d(f + g)p = dfp + dgp.

• If f ∈Hom(Rn,Rm), then for all p, (df )p = f .

• For prj ∈Hom(Rn,R), prj : Rn toR, we have
x1
...
xn

 7→ xj .

• Recall from linear algebra that

ej ∈Rm =



0
...
1
...
0


, where 1 is in the jth row.

For all f : Ω→R
m, where Ω ⊂R

m, we have

f =
m∑
j=1

(prj ◦ f )ej ,

and prj ◦ f : Ω→R.
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Theorem 85. Let Ω ⊂ R
n be open, with p ∈Ω and f : Ω→ R

m differentiable
at p. Let G ⊂ R

m be open, f (Ω) ⊂ G, and g : G→ R
k be differentiable at f (p).

Then g ◦ f is differentiable at p, and

d(g ◦ f )p = (dg)f (p) ◦ (df )p.

Pictorially,

R
n
dfp
−→R

m
dgp
−→R

k ,

and the arrow from R
n→R

k is dgf (p) ◦ dfp, a product of matrices.

Proof. Let p ∈Ω and h ∈Rn. Then

∀h, f (p+ h) = f (p) + dfp(h) + r1(h), ∀z, g(f (p) + z) = g(f (p)) + dg(p)(z) + r2(z).

Now

(g ◦ f )(p+ h) = g(f (p+ h)) = g(f (p) +
d(fp)h+ r1(h)

z
= g(f (p)) + (dgf (p) ◦ dfp)(h) + dgf (p)(r1(h)) + r2((df )ph+ r1(h))

= (g ◦ f )(p) +Ah+R(h)

It follows that 
|r1(h)|
|h| → 0, h→ 0
|r2(z)|
|z| → 0, z→ 0

z = (dfp)h+ r1(h)

=⇒ |R(h)|
|h|
→ 0, h→ 0,

because
|(dgf (p))(r1(h))|

|h|
≤
‖dgf (p)‖ · |r1(h)|

|h|
→ 0, h→ 0.

The process for r2 is similar.

For A ∈Hom(Rn,Rm), we define a norm on A as

‖A‖ = ‖[aij ]‖ =
n,m∑
i,j=1

|aij |.

Using this norm, (Hom(Rn,Rm),‖ · ‖) is a normed space.

Theorem 86. f : Ω→ R
m is differentiable at p ∈ Ω if and only if for all j ∈

[1,n], the funuctions prj ◦ f : Ω→R are differentiable at p.

Proof. At once from sum rule and chain rule.
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Definition 91 (Partial Derivative). Let f : Ω→ R, p ∈Ω, and v ∈ Rn for
v , 0. We define the partial derivative of f at p to be

∂f

∂v

∣∣∣∣∣
p

= lim
t→0

f (p+ tv)− f (p)
t

.

How are the differential and partial derivative related?

∂f

∂v

∣∣∣∣∣
p

= lim
t→0

f (p+ tv)− f (p)
t

= lim
t→0

f (p) + dfp(tv) + (tv)− f (p)

t

= (dfp)v + lim
t→0

r(tv)
t

Thus if dfp exists, then

∂f

∂v

∣∣∣∣∣
p

= dfp(v), v ∈ V , 0.

10.2 Multivariable Derivative Theorems

10.3 Prelude to Differential Geometry



11Multivariate Integration



12Fourier Analysis



13Measure Theory

13.1 Outer Measure

How would we formally define the notion of the length of an interval? This
should be relatively simple to do.

Definition 92 (Length of Open Interval). The length `(I) of an open in-
terval I is defined to be

`(I) =


b − a, if I = (a,b), a,b ∈R, a < b
0, if I = ∅
∞, if I = (−∞, a) or I = (a,∞), a ∈R
∞, if I = (−∞,∞)

Given a subset of R, A ⊂ R, we would expect that the size of A cannot be
larger than the sum of the lengths of a sequence of open intervals whose union
contains A. We can take the infimum of all such sums to get a "size" of A.

Definition 93 (Outer Measure). The outer measure m∗(A) of a set A ⊂R is
defined by

m∗(A) = inf

 ∞∑
k=1

`(Ik) : I1, I2, . . . are open intervals such that A ⊂
∞⋃
k=1

Ik

 .
What will be the outer measure of an aribtrary finite set? SupposeA = {a1, . . . , an}
is a finite subset of R. Let ε > 0. We define a sequence of open intervals
I1, I2, . . . by

Ik =

(ak − ε,ak + ε), k ≤ n
∅, k > n

.

The union of our sequence of open intervals will contain A. Then
∑∞
k=1 `(Ik) =

2εn. Hencem∗(A) ≤ 2εn, but since ε is arbitrary, this tells us thatm∗(A) = 0. So
we know that finite sets will have outer measure zero. This is not the strongest
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argument we can make; in fact, countable sets will have outer measure zero
as well.

Theorem 87. Every countable subset of R has outer measure zero.

Proof. Let A = {a1, a2, . . . } be a countable subset of R. Let ε > 0. Then for k ∈N,
let

Ik =
(
ak −

ε

2k
, ak +

ε

2k

)
.

The union of our sequence of open intervals will contain A. Then
∑∞
k=1 `(Ik) =

2ε, and so m∗(A) ≤ 2ε, which tells us that indeed m∗(A) = 0.

What about set inclusion? Does taking the outer measure preserve order like
we expect it to? Indeed, it does.

Theorem 88. Suppose A and B are subsets of R such that A ⊂ B. Thenm∗(A) ≤
m∗(B).

Proof. Let I1, I2, . . . be a sequence of open intervals whose union contains B,
and as a result, also contain A. This means that

m∗(A) ≤
∞∑
k=1

`(Ik).

When we take the infimum over all sequences of open intervals whose union
contains B, then m∗(A) ≤m∗(B).

Definition 94 (Translation). If t ∈ R and A ⊂ R, the translation t +A is
defined by

t +A = {t + a | a ∈ A}.

What about translation-invariance? It would make sense that shifting a set
left or right shouldn’t affect its outer measure.

Theorem 89. Suppose t ∈R and A ⊂R. Then m∗(t +A) =m∗(A).

Proof. Let I1, I2, . . . be a sequence of open intervals whose union contains A.
Then t+I1, t+I2, . . . is a sequence of open intervals whose union contains t+A.
Thus

m∗(t +A) ≤
∞∑
k=1

`(t + Ik) =
∞∑
k=1

Ik .

When we take the infimum of the last term over all sequences, we have m∗(t+
A) ≤m∗(A). For the other direction, notice that A = −t + (t +A). We apply our
inequality from above, replacing A with t +A and t with −t. Hence m∗(A) =
m∗(−t + (t +A)) ≤m∗(t +A). Combining both sides, we have our desired result.
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Consider the union of intervals of (1,4) and (3,5). This will be (1,5). Notice
that

4 = `((1,4)∪ (3,5)) < `(((1,4) + `(3,5)) = 5,

and this makes sense because (3,4) is counted twice on the right side. This
is the idea of countable subadditivity, another property that holds for outer
measures.

Theorem 90. Suppose A1,A2, . . . is a sequence of subsets of R. Then

m∗
 ∞⋃
k=1

Ak

 ≤ ∞∑
k=1

m∗(Ak).

Proof. Assume m∗(Ak) <∞ for all k ∈ Z+, as if this is not true, the inequality
always holds. Let ε > 0. For each k ∈Z+, let I1,k , I2,k , . . . be a sequence of open
intervals whose union contains Ak such that

∞∑
j=1

`(Ij,k) ≤
ε

2k
+m∗(Ak).

Hence
∞∑
k=1

∞∑
j=1

`(Ij,k) ≤ ε+
∞∑
k=1

m∗(Ak).

We can rearrange {Ij,k | j,k ∈ Z
+} into a sequence of open intervals whose

union contains
⋃∞
k=1Ak by adjoining k −1 intervals whose indices add up to k

for step k. That is,
(I1,1), (I2,1, I1,2), (I1,3, I2,2, I3,1), . . .

The inequality above tells us that the sum of the intervals above is less than
or equal to ε+

∑∞
k=1m

∗(Ak). Thus,

m∗
 ∞⋃
k=1

Ak

 ≤ ε+
∞∑
k=1

m∗(Ak),

but since ε is arbitrary, we achieve our desired result.

This property also implies another property of interest, known as finite sub-
additivity, which means that

|A1 ∪ · · · ∪An| ≤ |A1|+ · · ·+ |An|,

for all A1, . . . ,An ⊂ R. This is because we take Ak = ∅ for k > n in the proof
above.

What about closed intervals? We expect that m∗([a,b]) = b − a. The ≤ side
of the equality is obvious, how how about the ≥ side? This requires a bit more
thinking, and requires the use of our old friend Heine-Borel.
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Theorem 91. Suppose a,b ∈R, with a < b. Then m∗([a,b]) = b − a.

Proof. Let ε > 0. Then (a−ε,b+ε),∅,∅, . . . is a sequence of open intervals whose
union contains [a,b]. Thus m∗([a,b]) ≤ b − a + 2ε, and since ε is arbitrary, we
conclude that m∗([a,b]) ≤ b − a.
Now let I1, I2, . . . be a sequence of open intervals such that [a,b] ⊂

⋃∞
k=1 Ik . By

Heine-Borel, there exists n ∈Z+ such that [a,b] ⊂ I1∪· · ·∪ In. We proceed with
induction that

n∑
k=1

`(Ik) ≥ b − a.

We have already proved the base case of n = 1. For n > 1, suppose I1, . . . , In, In+1
are open intervals such that [a,b] ⊂ I1∪· · ·∪In∪In+1. This means b is in at least
one of our intervals. By relabeling, assume b ∈ In+1. Let In+1 = (c,d). If c ≤ a,
then `(In+1) ≥ b − a and we’re done. Hence suppose that a < c < b < d. Then
[a,c] ⊂ I1 ∪ · · · ∪ In. By our inductive hypothesis,

∑n
k=1 `(Ik) ≥ c − a. Hence

n+1∑
k=1

`(Ik) ≥ (c − a) + `(In+1)

= (c − a) + (d − c)
= d − a
≥ b − a.

As a direct corollary, we find out that nontrivial intervals are uncountable.
That is, every interval in R that contains at least two distinct elements is un-
countable.

Proof. Let I be an interval that contains a,b ∈R with a < b. Then

m∗(I) ≥m∗([a,b]) = b − a > 0.

Since every countable subset of R has outer measure 0, we can conclude that
I is uncountable.

Not every property that we expect to be satisfied will hold for the outer
measure; namely, the idea of additivity.

Theorem 92. There exist disjoint sets A and B of R such that

m∗(A∪B) ,m∗(A) +m∗(B).
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13.2 Measurability

We have shown that the outer measure doesn’t have all of the desired prop-
erties that we would expect for our idea of size of a set. Does there exist a
function or "measure" that satisfies some properties for all subsets of R?

Theorem 93 (Nonexistence of Measure). There does not exist a function µ
with all of the following properties:

(a) µ is a function from the set of subsets of R to [0,∞].

(b) µ(I) = `(I) for every open interval I of R.

(c) Countable Additivity:

µ

 ∞⋃
k=1

Ak

 =
∞∑
k=1

µ(Ak),

for every disjoint sequence A1,A2, . . . of subsets of R.

(d) Translation Invariance:
µ(t +A) = µ(A),

for every t ∈R and A ⊂R.

Proof. Suppose that there did exist a function µ with all of the properties.
Observe that µ(∅) = 0 from (b). If A ⊂ B ⊂R, then µ(A) ≤ µ(B)

How do we remedy this fact? We cannot loosen (b) because the size of an
interval must be its length. We cannot loosen (c) because countable additivity
is essential to prove limit theorems. We cannot loosen (d) because that would
be very counter-intuitive for what "length" is. This leaves us with (a) as our
only option to loosen our definition.

Definition 95 (σ−algebra). Suppose X is a set and S is a set of subsets
of X. Then S is called a σ−algebra on X if the following conditions are
satisfied:

• ∅ ∈ S ,

• If E ∈ S , then X \E ∈ S ,
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• If E1,E2, . . . is a sequence of elements of S , then

∞⋃
k=1

Ek ∈ S .

As an example, let X be a set. Then {∅,X} will be a σ−algebra on X. P (X) =
2X , the power set of X, will also be a σ−algebra on X. We have some more
properties of σ−algebras.

Theorem 94. Let S be a σ−algebra on X. Then

(a) X ∈ S ,

(b) If D,E ∈ S , then D ∪E ∈ S and D ∩E ∈ S and D \E ∈ S ,

(c) If E1,E2, . . . is a sequence of elements of S , then

∞⋂
k=1

Ek ∈ S .

(c) is what we call closure under countable intersections.

Definition 96 (Measurable Space). A measurable space is an ordered pair
(X,S), where X is a set and S is a σ−algebra on X. An element of S is
called an S−measurable set, or just simply a measurable set if S is clear
from the context.

For example, if X = R and S is the set of all subsets of R that are countable or
have a countable component, then the set of rational numbers is S−measurable
but the set of positive real numbers is not.

Theorem 95. Suppose X is a set and A is a set of subsets of X. Then the
intersection of all σ−algebras on X that contain A is a σ−algebra on X.

Consider some examples:

• If X is a set and A is the set of subsets of X that consist of exactly one
element; that is,

A = {{x} | x ∈ X},

then the smallest σ−algebra on X containingA is the set of all subsets E
of X such that E is countable or X \E is countable.

• If A = {(0,1), (0,∞)}, then the smallest σ−algebra on R containing A is

{∅, (0,1), (0,∞), (−∞,0]∪ [1,∞), (−∞,0], [1,∞), (−∞,1),R}.
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Definition 97 (Borel set). The smallest σ−algebra on R containing all
open subsets of R is called the collection of Borel subsets of R. An element
of this σ−algebra is called a Borel set.

Some examples:

• Every closed subset of R is a Borel set because every closed subset of R
is the complement of an open subset of R.

• Every countable subset of R is a Borel set because if B = {x1,x2 . . . }, then
B =

⋃∞
k=1{xk}, which is a Borel set because {xk} is a Borel set.

• Every half open interval [a,b) is a Borel set because [a,b) =
⋂∞
k=1(a− 1

k ,b).

• If f : R→R is a function, then the set of points at which f is continuous
is the intersection of a sequence of open sets, and thus is a Borel set.

There do exist subsets of R that are not Borel sets. However, any subset of R
that we can write in a concrete fashion will be a Borel set.

Recall that the inverse image (or preimage) of a set A given a function f :
X→ Y and A ⊂ Y is defined to be

f −1(A) = {x ∈ X | f (x) ∈ A}.

Recall from Math 8 that inverse images have the following nice properties:

• f −1(Y \A) = X \ f −1(A), for every A ⊂ Y .

• f −1 (
⋃
A∈AA) =

⋃
A∈A f

−1(A) for every set A of subsets of Y .

• f −1 (
⋂
A∈AA) =

⋂
A∈A f

−1(A) for every set A of subsets of Y .

We also know that for compositions, where if f : X → Y and g : Y → W are
functions, then

(g ◦ f )−1(A) = f −1(g−1(A)),

for all A ⊂ W . Using these ideas, we can finally define what it means for a
function to be measurable.

Definition 98 (Measurable Function). Suppose (X,S) is a measurable
space. A function f : X → R is called S−measurable (or simply just mea-
surable if it is clear from the context) if

f −1(B) ∈ S,
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for every Borel set B ⊂R.

Suppose our σ−algebra is just {∅,X}. Then the only measurable functions from
X to R are constant functions. If our σ−algebra was P (X), then every function
from X to R would be measurable.

Definition 99 (Characteristic Function). Suppose E ⊂ X. The characteris-
tic function of E is the function χE : X→R defined by

χE(x) =

1, x ∈ E
0, x < E

What would be the inverse image of a characteristic function? Let (X,S) be a
measurable space, with E ⊂ X and B ⊂R. Then

χ−1
E (B) =


E, 0 < B but 1 ∈ B
X \E, 0 ∈ B but 1 < B

X, 0 ∈ B and 1 ∈ B
∅, 0 < B and 1 < B

From this, by definition of measurable, χE is S−measurable if and only if
E ∈ S .

Theorem 96 (Measurability Criterion). Suppose (X,S) is a measurable space
and f : X→R is a function such that

f −1((a,∞)) = {x ∈ X | f (x) > a} ∈ S ,

for all a ∈R. Then f is an S−measurable function.

This condition is equivalent to the following:

• f −1((a,∞)) = {x ∈ X | f (x) ≤ a} ∈ S ,

• f −1((a,∞)) = {x ∈ X | f (x) < a} ∈ S ,

• f −1((a,∞)) = {x ∈ X | f (x) ≥ a} ∈ S .

The first point follows because it is the complement to the Measurability cri-
terion. The other two follow because the complement in S of a measurable
subset of S is also measurable.

Definition 100 (Borel-Measurable). Let X ⊂ R. A function f : X → R is
called Borel-measurable if f −1(B) is a Borel set for every Borel set B ⊂R.
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How is measurability affected by functions or algebraic operations?

Theorem 97. Every continuous real-valued function defined on a Borel subset
of R is a Borel measurable function.

Proof. Let X ⊂ R be a Borel set and f : X → R continuous. To prove that f is
Borel-mesaurable, fix a ∈R. If x ∈ X and f (x) > a, then there exists δx > 0 such
that f (y) > a for all y ∈ (x − δx,x+ δx)∩X. Thus

f −1((a,∞)) =

 ⋃
x∈f −1((a,∞))

(x − δx,x+ δx)

∩X.
The union is an open subset of R, and so its intersection with X is a Borel set.
Thus f −1((a,∞)) is a Borel set.

Theorem 98. Every increasing function defined on a Borel subset of R is a
Borel measurable function.

Proof. Let X ⊂ R be a Borel set and f : X → R be increasing. To prove that f
is Borel meausrable, fix a ∈R. Let b = inff −1((a,∞)). Then obviously,

f −1((a,∞)) = (b,∞)∩X, or f −1((a,∞)) = [b,∞)∩X.

Either way, f −1((a,∞)) is a Borel set.

Measurability also interacts well with composition.

Theorem 99. Supppose (X,S) is a measurable space and f : X → R is an
S−measurable function. Suppose g is a real-valued Borel measurable function
defined on a subset of R that includes the range of f . Then g ◦ f : X→R is an
S−measurable function.

Proof. Let B ⊂R be a Borel set. By properties of inverse images,

(g ◦ f )−1(B) = f −1(g−1(B)).

Because g is Borel-measurable, g−1(B) is a Borel subset of R. Because f is
an S−measurable function, f −1(g−1(B)) ∈ S . Thus the equation above implies
that (g ◦ f )−1(B) ∈ S , and so it is S−measurable by definition.

This has a wide variety of implications. For once, given a measurable function
f : X → R, we know that, for example, −f , 1

2 f , |f |, and f 2 will all be measur-
able functions, as we can take compositions of g(x) = −x, g(x) = 1

2x, and so on.
As for algebraic operations, measurability also acts like we expect it to.
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Theorem 100. Suppose (X,S) is a measurable space and f ,g : X → R are
S−measurable. Then the following are all S−measurable functions:

• f + g,

• f − g,

• f g,

• f
g , provided g(x) =, 0 for all x ∈ X.

Proof. • We want to show that for a ∈R,

(f + g)−1((a,∞)) =
⋃
r∈Q

(
f −1((r,∞))∩ g−1((a− r,∞))

)
,

and so (f + g)−1((a,∞)) ∈ S . Let x ∈ (f + g)−1((a,∞)). Then a < f (x) +
g(x), which means that the open interval (a−g(x), f (x)) is nonempty, and
so it contains some rational number r. It follows that r < f (x), and so
x ∈ f −1((r,∞)), and a − g(x) < r. Hence x ∈ g−1((a − r,∞)). This proves
the forward direction. For the backward direction, let x ∈ f −1((r,∞))∩
g−1((a − r,∞)), for some r ∈ Q. Then r < f (x) and a − r < g(x). Adding
these, we find a < f (x) + g(x), and we’re done.

• Since −g is an S−measurable function, f + (−g) is also an S−measurable
function.

• Notice that we can rewrite

f g =
(f + g)2 − f 2 − g2

2
,

and since each component is individually S−measurable, their sum will
also be S−measurable.

• Suppose g(x) , 0 for all x ∈ X. The function defined on R\ {0} that maps
x 7→ 1

x is continuous, and thus Borel-measurable. We know that 1
g is

S−measurable, and so f
g will be S−measurable as well.

What happens when we take a pointwise limit of measurable functions? For
Riemann integration, this does not guarantee that the limit be Riemann inte-
grable. Thus it would be nice to have this property available to us.
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Theorem 101. Let (X,S) be a measurable space and f1, f2, . . . a sequence of
measurable functions from X → R. Suppose limk→∞ fk(x) exists for each x ∈
X. Define f : X→R by

f (x) = lim
k→∞

fk(x).

Then f is S−measurable.

Proof. We want to show that for a ∈R,

f −1((a,∞)) =
∞⋃
j=1

∞⋃
m=1

∞⋂
k=m

f −1
k

((
a+

1
j
,∞

))
.

Let x ∈ f −1((a,∞)). This means there exists j ∈ Z+ such that f (x) > a + 1
j . By

limit definition, there exists some m ∈ Z
+ such that fk(x) > a + 1

j for k ≥ m.
Thus x is in the right side of the equation.

Now let x be in the right side. This means there exists j,m ∈ Z+ such that
fk(x) > a+ 1

j , for all k ≥m. Taking the limit as k→∞, this means f (x) ≥ a+ 1
j >

a. Thus x is in the left side.

All of our previous definitions, theorems, etc. can be stated for the extended
real line, or R = R∪{±∞}. Usually we will denote this as [−∞,∞], to show that
infinity is included in our interval. Some theorems can only be stated for the
extended real numbers, however, such as the following theorem.

Theorem 102. Suppose (X,S) is a measurable space and f1, f2, . . . is a sequence
of S−measurable functions from X to [−∞,∞]. Define g,h : X→ [−∞,∞] by

g(x) = inf{fk(x) | k ∈Z+}, h(x) = sup{fk(x) | k ∈Z+}.

Then g and h are S−measurable.

Proof. Let a ∈R. Then by definition of supremum,

h−1((a,∞]) =
∞⋃
k=1

f −1
k ((a,∞]).

This, combined with the measurability criterion, tells us that h is indeed
S−measurable. Likewise, we can write

g(x) = −sup{−fk(x) | k ∈Z+},

for all x ∈ X. Hence g is also S−measurable.

Having discussed measurability, the natural next step would be to discuss
nonmeasurable sets. Surely these must exist, otherwise what’s the point of
defining a measurable set? We can examine this under the context of the
outer measure.
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Theorem 103. Let X ⊂ R be a bounded measurable set. Suppose there is a
bounded, countable set of real numbers T for which the collection of translates
of X, (t +E)t∈T , is disjoint. Then m∗(E) = 0.

Proof. Since the translate of a measurable set is measurable, by the countable
additivity of measure over countable disjoint unions of measurable sets,

m∗
⋃
t∈T

(t +X)

 =
∑
t∈T

m∗(t +X).

Since both X and T are bounded, the union is also bounded, and hence has
finite measure. Thus the left hand side is finite. However, since measure is
translation invariant, m∗(t +X) = m(X) > 0 for each t ∈ T . Thus the set T is
countable and the right hand side is finite, with m∗(X) = 0.

Theorem 104 (Vitali Theorem). Any set E ⊂ R with m∗(E) < ∞ contains a
subset that fails to be measurable.

Any set that fills this requirement is called a Vitali set.

13.3 General Measures

The word measure allows us to use a single word instead of repeating theorems
for length, area, and volume. Measure is simply a generalization of the notion
of size. We can now formally define what a measure is in general.

Definition 101 (Measure). Let X be a set and S a σ−algebra on X. A
measure on (X,S) is a function µ : S → [0,∞] such that µ(∅) = 0 and

µ

 ∞⋃
k=1

Ek

 =
∞∑
k=1

µ(Ek),

for every disjoint sequence E1,E2, . . . of sets in S .

What are some tangible examples of measures?

• If X is a set, then the counting measure is the measure µ defined on the
σ−algebra of X, P (X), by setting µ(E) = n if E is a finite set containing
exactly n elements and µ(E) =∞ if E is not a finite set.

• If X is a set and S is a σ−algebra on X, and c ∈ X, then the Dirac measure
δc on (X,S) is defined as

δc(E) =

1, c ∈ E
0, c < E
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• Let X be a set and S a σ−algebra on X. Let w : X→ [0,∞] be a function.
Then we can define a measure µ on (X,S) by

µ(E) =
∑
x∈E

w(x),

for E ∈ S .

However, if we consider the measurable space (X,P (X)), and define µ(E) =
m∗(E), where E ⊂ R, then this will not be a measure because it is not finitely
additive.

Definition 102 (Measure Space). A measure space is an ordered triple
(X,S ,µ) where X is a set, S is a σ−algebra on X, and µ is a measure on
(X,S).

We study five important properties of measures:

(1) Measure preserves order

(2) Countable subadditivity

(3) Measure of an increasing union

(4) Measure of a decreasing intersection

(5) Measure of a union

Theorem 105. Let (X,S ,µ) be a measure space and D,E ∈ S are such that
D ⊂ E. Then:

(a) µ(D) ≤ µ(E),

(b) µ(E \D) = µ(E)−µ(D) provided µ(D) <∞.

Proof. Because E =D ∪ (E \D), and this is a disjoint union, we have

µ(E) = µ(D) +µ(E \D) ≥ µ(D),

proving (a). If µ(D) < ∞, then subtracting µ(D) from both sides gives us (b).

Theorem 106. Let (X,S ,µ) be a measure space and E1,E2, · · · ∈ S . Then

µ

 ∞⋃
k=1

Ek

 ≤ ∞∑
k=1

µ(Ek).
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Proof. Let D1 = ∅ and Dk = E1 ∪ · · · ∪Ek−1 for k ≥ 2. Then

E1 \D1, E2 \D2, . . .

is a disjoint sequence of subsets of X whose union equals
⋃∞
k=1Ek . Thus

µ

 ∞⋃
k=1

Ek

 = µ

 ∞⋃
k=1

(Ek \Dk)


=
∞∑
k=1

µ(Ek \Dk)

≤
∞∑
k=1

µ(Ek).

Theorem 107. Let (X,S ,µ) be a measure space and E1 ⊂ E2 ⊂ · · · is an increas-
ing sequence of sets in S . Then

µ

 ∞⋃
k=1

Ek

 = lim
k→∞

µ(Ek).

Proof. Let E0 = ∅. Then
∞⋃
k=1

Ek =
∞⋃
j=1

(Ej \Ej−1),

where the union on the right is a disjoint union. Thus

µ

 ∞⋃
k=1

Ek

 =
∞∑
j=1

µ(Ej \Ej−1)

= lim
k→∞

k∑
j=1

µ(Ej \Ej−1)

= lim
k→∞

k∑
j=1

(µ(Ej )−µ(Ej−1))

lim
k→∞

µ(Ek).

Theorem 108. Let (X,S ,µ) be a measure space and E1 ⊃ E2 ⊃ · · · is a decreas-
ing sequence of sets in S , and µ(E1) <∞. Then

µ

 ∞⋂
k=1

Ek

 = lim
k→∞

µ(Ek).
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Proof. By DeMorgan’s Laws, we have

E1 \
∞⋂
k=1

Ek =
∞⋃
k=1

(E1 \Ek).

Then (E1 \ E1 ⊂ E2 \ E1 ⊂ · · · is an increasing sequence of sets in S . Take µ on
both sides

µ

E1 \
∞⋂
k=1

Ek

 = lim
x→∞

µ(E1 \Ek).

We then use the disjoint union property to get

µ(E1)−µ

 ∞⋂
k=1

Ek

 = µ(E1)− lim
k→∞

µ(E1 \Ek),

which gives us our desired result.

Theorem 109. Let (X,S ,µ) be a measure space andD,E ∈ S , with µ(D∩E) <∞.
Then

µ(D ∪E) = µ(D) +µ(E)−µ(D ∩E).

Proof. We have that

D ∪E = (D \ (D ∩E))∪ (E \ (D ∩E))∪ (D ∩E).

The right side is a disjoint union. Thus

µ(D ∪E) = µ(D \ (D ∩E)) +µ(E \ (D ∩E)) +µ(D ∩E)

= (µ(D)−µ(D ∩E)) + (µ(E)−µ(D ∩E)) +µ(D ∩E)

= µ(D) +µ(E)−µ(D ∩E),

as desired.

13.4 Lebesgue Measure

While the outer measure does not have all the properties we desire if we con-
sider all subsets of R, if we loosen this requirement to some other types of
sets.
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Theorem 110. The following are properties of the outer measure restricted to
certain subsets.

(a) Suppose A and G are disjoint subsets of R, and G is open. Then

m∗(A∪G) =m∗(A) +m∗(G).

(b) Suppose A and F are disjoint subsets of R, and F is closed. Then

m∗(A∪F) =m∗(A) +m∗(F).

(c) Suppose A and B are disjoint subsets of R, and B is a Borel set. Then

m∗(A∪B) =m∗(A) +m∗(B).

Proof. (a)

As a direct corollary, we can show that not every subset of R is a Borel set.

Theorem 111. There exists a set B ⊂ R such that m∗(B) < ∞ and B is not a
Borel set.

Proof. We know that there exists disjoint sets A,B ⊂ R such that m∗(A∪ B) ,
m∗(A) +m∗(B). For any such sets, we must have m∗(B) <∞ because otherwise
both m∗(A∪B) and m∗(A) +m∗(B) equal∞. Then (c) from above tells us that B
is not a Borel set.

Borel sets can be approximated by closed sets. This is useful in applications,
as Borel sets are often quite abstract.

Theorem 112. Suppose B ⊂ R is a Borel set. Then for every ε > 0, there exists
a closed set F ⊂ B such that m∗(B \F) < ε.

So is the outer measure actually a measure when restricted to the Borel sets?
That is, is (R,B,m∗) a measure space, where B is the σ−algebra of Borel subsets
of R?

Proof. Let B1,B2, . . . be a disjoint sequence of Borel subsets of R. Then for
n ∈Z+, we have

m∗
 ∞⋃
k=1

Bk

 ≥m∗
 n⋃
k=1

Bk

 =
n∑
k=1

m∗(Bk),
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Taking the limit as n→∞, we havem∗(
⋃∞
k=1Bk) ≥

∑∞
k=1m

∗(Bk). The inequality
in the other direction follows from countable subadditivity of outer measure.
Hence

m∗
 ∞⋃
k=1

Bk

 =
∞∑
k=1

m∗(Bk).

Thus the outer measure is a measure on the σ−algebra of Borel subsets of
R.

Definition 103 (Lebesgue Measure). The Lebesgue measure is the measure
on (R,B), where B is the σ−algebra of Borel subsets of R, that assigns to
each Borel set its outer measure.

We denote this as, for E ⊂ B,

m(E) =m∗(E).

Definition 104 (Lebesgue Measurable Set). A set A ⊂R is called Lebesgue
measurable if there exists a Borel set B ⊂ A such that m(A \B) = 0.

We denote the set of Lebesgue measurable subsets of R as L. Every Borel set
is Lebesgue measurable because if A ⊂ R is a Borel set, then we can take B =
A in the definition above. We have several equivalent conditions for being
Lebesgue measurable.
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Theorem 113. Let A ⊂R. Then the following are equivalent:

(a) A is Lebesgue measurable.

(b) For each ε > 0, there exists a closed set F ⊂ A with m(A \F) < ε.

(c) There exist closed sets F1,F2, . . . contained in A such that

m

A \ ∞⋃
k=1

Fk

 = 0.

(d) There exists a Borel set B ⊂ A such that m(A \B) = 0.

(e) For each ε > 0, there exists an open set G ⊃ A such that m(G \A) < ε.

(f) There exists open sets G1,G2, . . . containing A such that

m

 ∞⋂
k=1

Gk \A

 = 0.

(g) There exists a Borel set B ⊃ A such that m(B \A) = 0.

Now we want to answer the following questions:

• Is L a σ−algebra on R?

• Is the outer measure a measure on (R,L)? In other words, is (R,L,m∗) a
measure space?

As it turns out, these are both true statements.

Proof. • Because Lebesgue measurable implies there exists a closed set F ⊂
A with m(A \ F) < ε, L is the collection of sets satisfying the second
condition. This set is a σ−algebra on R, proving the first statement.

• Let A1,A2, . . . be a disjoint sequence f Lebesgue measurable sets. By
definition, for each k ∈ Z

+, there exists a Borel set Bk ⊂ Ak such that
m(Ak \Bk) = 0. Now

m

 ∞⋃
k=1

Ak

 ≥m
 ∞⋃
k=1

Bk


=
∞∑
k=1

m(Bk)

=
∞∑
k=1

m(Ak).
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This combined with the countable subadditivity of outer measures, this
gives us that m(

⋃∞
k=1Ak) =

∑∞
k=1m(Ak), which shows that m is indeed a mea-

sure.

Sometimes we use a slightly modified definition for what the Lebesgue
measure really is.

Definition 105 (Lebesgue Measure v2). The Lebesgue measure is the mea-
sure on (L,R), where L is the σ−algebra of Lebesgue measurable subsets
of R, that assigns to each Lebesgue measurable set its outer measure.

Theorem 114 (Borel-Cantelli Lemma). Let E1,E2, . . . be a countable collection
of measurable sets for which

∑∞
k=1m(Ek) <∞. Then almost all x ∈R belong to

at most finitely many of the Ek ’s.

Proof. For each n, by countable subadditivity of m,

m

 ∞⋃
k=n

Ek

 ≤ ∞∑
k=n

m(Ek) <∞.

Hence, by the continuity of measure,

m

 ∞⋂
n=1

 ∞⋃
k=n

Ek


 = lim

n→∞
m

 ∞⋃
k=n

Ek

 ≤ lim
n→∞

∞∑
k=n

m(Ek) = 0.

Therefore almost all x ∈ R fail to belong to
⋂∞
n=1

[⋃∞
k=nEk

]
and therefore be-

long to at most finitely many Ek ’s.

13.5 Convergence of Measurable Functions

Theorem 115 (Littlewood’s Three Principles). Roughly speaking, the follow-
ing principles hold:

• Every measurable set is nearly a finite union of intervals.

• Every measurable function is nearly continuous.

• Every pointwise convergent sequence of measurable functions is nearly
uniformly convergent.

For continuous functions, if fn : E→R and n = 1,2, . . . is a sequence of contin-
uous functions, and if fn→ f pointwise on E, we know that f will be continu-
ous. Does this hold true if instead of continuous, fn were measurable instead?
That is, if fn : E→R are measurable, then is f measurable?
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Theorem 116. Let fn : E → R, and n = 1,2, . . . be a sequence of measurable
functions on E that converges pointwise on E to the function f . Then f is
measurable.

Proof. Let E0 be a subset of E for which m(E0) = 0 and fn → f pointwise on
E \ E0. Since m(E0) = 0, we know f is measurable if and only if its restric-
tion to E \ E0 is measurable. Therefore by replacing E by E \ E0, we may
assume the sequence converges pointwise on all of E. Fix any number c. We
must show that {x ∈ E | f (x) < c} is measurable. Observe that for x ∈ E, since
limn→∞ fn(x) = f (x), that

f (x) < c⇐⇒∃n,k ∈Z+ for which fj (x) < c − 1
n
, ∀j ≥ k.

But for any natural numbers n and j, since fj is measurable, the set {x ∈ E |
fj (x) < c − 1

n } is measurable. Therefore for any k, the intersection of the count-
able collection of measurable sets

∞⋂
j=k

{
x ∈ E | fj (x) < c − 1

n

}
is also measurable. Consequently, since the union of a countable collection of
measurable sets is measurable,

{x ∈ E | f (x) < c} =
⋃

1≤k,n<∞

 ∞⋂
j=k

{
fj (x) < c − 1

n

}
is measurable as well, completing our proof.

Recall that pointwise convergence does not necessarily imply uniform conver-
gence. However, a pointwise convergent sequence of functions on a measure
space with finite total measure almost converges uniformly, in the sense that
it converges uniformly except on a set that can have arbitrarily small measure.

Theorem 117 (Egorov’s Theorem). Let (X,S ,µ) be a measure space such that
µ(X) <∞. Let f1, f2, . . . be a sequence of S−measurable functions from X to R

that converges pointwise on X to a function f : X → R. Then for every ε > 0,
there exists a set E ∈ S such that µ(X \E) < ε and f1, f2, . . . converges uniformly
to f on E.

Proof. Suppose ε > 0. Fix some n ∈ Z
+. By definition of pointwise conver-

gence,
∞⋃
m=1

∞⋂
k=m

{
x ∈ X | |fk(x)− f (x)| < 1

n

}
= X.
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Then for some m ∈Z+, let

Am,n =
∞⋂
k=m

{
x ∈ X | |fk(x)− f (x)| < 1

n

}
.

By construction, A1,n ⊂ A2,n ⊂ · · · , which is an increasing sequence of sets, and
so we can rewrite

∞⋃
m=1

Am,n = X.

This implies that limm→∞µ(Am,n) = µ(X). Thus there exists mn ∈Z+ such that

µ(X)−µ(Am,n) <
ε
2n
.

If we let E =
⋂∞
n=1Amn,n, then

µ(X \E) = µ

X \ ∞⋂
n=1

Amn,n


= µ

 ∞⋃
n=1

(X \Amn,n)


≤
∞∑
n=1

µ(X \Amn,n)

< ε.

Now we must show that f1, f2, . . . does converge uniformly to f on E. Let ε > 0
again. Let n ∈Z+ be such that 1

n < ε. Then E ⊂ Amn,n, and so

|fk(x)− f (x)| < 1
n
< ε,

for all k ≥mn and x ∈ E. Thus fn→ f uniformly on E.

Definition 106 (Simple Function). We call a function simple if it takes on
only finitely many values.

If (X,S) is a measurable space and f : X → R is simple, and c1, . . . , cn are
distinct nonzero values of f , then

f = c1χE1
+ · · ·+ cnχEn ,

where Ek = f −1({ck}). This tells us that f is S−measurable iff E1, . . . ,En ∈ S .
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Theorem 118 (Simple Approximation Theorem). Let (X,S) be a measurable
space and f : X→ [−∞,∞] be S−measurable. Then there exists fn : X→R for
n = 1,2, . . . such that

(a) Each fk is a simple S−measurable function.

(b) |fk(x)| ≤ |fk+1(x)| ≤ |f (x)|, for all k ∈Z+ and all x ∈ X.

(c) limk→∞ fk(x) = f (x) for every x ∈ X.

(d) If f is bounded, then fn→ f uniformly on f .

Theorem 119 (Luzin’s Theorem). Let g : R→ R be a Borel measurable func-
tion. Then for every ε > 0, there exists a closed set F ⊂R such thatm(R\F) < ε
and g |F is a continuous function on F.

Definition 107 (Lebesgue Measurable Function). A function f : A→ R

with A ⊂ R is called Lebesgue measurable if f −1(B) is a Lebesgue measur-
able set for every Borel set B ⊂R.

At first glance, the concepts of Lebesgue measurable sets and Borel sets seem
very similar. Rest assured, there do exist Lebesgue measurable sets that are
not Borel sets, but that is beyond the scope of this course. Likewise, there
also exists Lebesgue measurable functions that are not Borel measurable, but
again, these are unlikely to arise in our study of measure theory, and are not
really that useful.

Theorem 120. Let f : R→ R be a Lebesgue measurable function. Then there
exists a Borel measurable function g : R→R such that

m({x ∈R | g(x) , f (x)}) = 0.

Proof. We know that there exists fn : R → R for n = 1,2, . . . such that fn →
f pointwisely on R, and fn are Lebesgue measurable simple functions. Let
k ∈ Z+. Then there exists c1, . . . , cn ∈ R and disjoint Lebesgue measurable sets
A1, . . . ,An ⊂R such that

fk = c1χA1
+ · · ·+ cnχAn .

Then for each j ∈ [1,n], there exists a Borel set Bj ⊂ Aj such thatm(Aj \Bj ) = 0.
Now let

gk = c1χB1
+ · · ·+ cnχBn .
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Then gk is a Borel measurable function and m({x ∈ R | gk(x) , fk(x)}) = 0.
If x <

⋃∞
k=1{x ∈ R | gk(x) , fk(x)}, then gk(x) = fk(x) for all k ∈ Z

+ and thus
limk→∞ gk(x) = f (x). Let

E =
{
x ∈R | lim

k→∞
gk(x) exists in R

}
.

E is a Borel subset of R. Also,

R \E ⊂
∞⋃
k=1

{x ∈R | gk(x) , fk(x)},

and so m(R \E) = 0. For x ∈R, let

g(x) = lim
k→∞

(χEgk)(x).

If x ∈ E, then the limit exists; if x ∈ R \ E, then the limit also exists because
(χEgk)(x) = 0 for all k ∈Z+. For each k, the function χEgk is Borel measurable.
Hence g is Borel measurable, and since

{x ∈R | g(x) , f (x)} ⊂
∞⋃
k=1

{x ∈R | gk(x) , fk(x)},

we know that
m({x ∈R | g(x) , f (x)}) = 0.



14Lebesgue Integration

We have shown before that the Riemann integral, while easy to understand,
cannot handle many functions of interest. We can use our robust theory of
measures to develop a theory of integration that fixes many of the problems
with Riemann integration.

14.1 Integration with Respect to a Measure

In this section, we only consider nonnegative functions.

Definition 108 (S−partition). Let S be a σ−algebra on a setX. An S−partition
of X is a finite collection A1, . . . ,Am of disjoint sets in S such that A1∪· · ·∪
Am = X.

As an analogue to Riemann integration, using our partition we need to be able
to define lower/upper sums. Since we are working with an arbitrary measure,
if X is a closed interval [a,b] in R and µ is the Lebesgue measure on the Borel
subsets of [a,b], the sets A1, . . . ,Am do not need to be subintervals of [a,b] like
in Riemann integration; they just need to be Borel sets.

Definition 109 (Lower/Upper Lebesgue Sum). Let (X,S ,µ) be a mea-
sure space. Let f : X → [0,∞] be an S−measurable function, and P an
S−partition A1, . . . ,Am of X. The lower Lebesgue sum L(f ,P ) is defined by

L(f ,P ) =
m∑
j=1

µ(Aj ) inf
Aj
f .

Similarly, the upper Lebesgue sum U (f ,P ) is defined by

U (f ,P ) =
m∑
j=1

µ(Aj )sup
Aj

f .
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We denote the integral of an S−measurable function f with respect to µ by∫
f dµ.

Definition 110 (Lebesgue Integral). Let (X,S ,µ) be a measure space, and
f : X→ [0,∞] an S−measurable function. The Lebesgue integral of f with
respect to µ, denoted

∫
f dµ, is defined by∫

f dµ = sup{L(f ,P ) | P is an S−partition of X}.

We expect that each S−partition A1, . . . ,Am of X will lead to an approximation
of f from below by the S−measurable simple function

∑m
j=1(infAj f )χAj . Thus

m∑
j=1

µ(Aj ) inf
Aj
f ≈

∫
f dµ.

The first property of our integral should be fairly simple: the Lebesgue inte-
gral of a characteristic function should just be the measure of a set.

Theorem 121. Let (X,S ,µ) be a measure space, and let E ∈ S . Then∫
χE dµ = µ(E).

Proof. Let P be the S−partition of X consisting of E and its complement X \E.
Clearly, L(χE , P ) = µ(E). Thus ∫

χE dµ ≥ µ(E).

To prove the other direction, let P be a S−partition A1, . . . ,Am of X. Then
µ(Aj ) infAj χE equals µ(Aj ) if Aj ⊂ E and is 0 otherwise. Thus

L(χE , P ) =
∑
{j |Aj⊂E}

µ(Aj )

= µ

 ⋃
{j |Aj⊂E}

Aj


≤ µ(E),

as desired. This completes our proof.
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Let us return to our old friend, the Dirichlet function. Notice that we can
rewrite fD (x) = χ

Q
. Consider the Lebesgue measure on R. We have that∫

χ
Q
dm = 0,

because m(Q) = 0. Hence from the very start, we can already integrate this
function, when with the Riemann integral, we immediately encountered some
problems. We had to generalize the Riemann integral through a complicated
process just to be able to integrate fD (x). Hence Lebesgue integration is much
more powerful than Riemann integration is. As a direct consequence, because
m([0,1] \Q) = 1, we can say that∫

χ[0,1]\Q dm = 1,

but the lower Riemann integral tells us that that would be 0, which is obvi-
ously incorrect.

Theorem 122. Let (X,S ,µ) be a measure space, and E1, . . . ,En be disjoint sets
in S . Also let c1, . . . , cn ∈ [0,∞]. Then∫  n∑

k=1

ckχEk

 dµ =
n∑
k=1

ckµ(Ek).

Proof. Without loss of generality, assume E1, . . . ,En is an S−partition of X by
replacing n+ 1 and setting En+1 = X \ (E1 ∪ · · · ∪En) and cn+1 = 0. Let P be this
S−partition, then L(

∑n
k=1 ckχEk , P ) =

∑n
k=1 ckµ(Ek). Thus∫  n∑

k=1

ckχEk

 dµ ≥ n∑
k=1

ckµ(Ek).
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To prove the other direction, let P be an S−partition A1, . . . ,Am of X. Then

L

 n∑
k=1

ckχEk , P

 =
m∑
j=1

µ(Aj ) min
{i|Aj∩Ei,∅}

ci

=
m∑
j=1

n∑
k=1

µ(Aj ∩Ek) min
{i|Aj∩Ei,∅}

ci

≤
m∑
j=1

n∑
k=1

µ(Aj ∩Ek)ck

=
n∑
k=1

ck

m∑
j=1

µ(Aj ∩Ek)

=
n∑
k=1

ckµ(Ek).

Theorem 123. Let (X,S ,µ) be a measure space and f ,g : X → [0,∞] be
S−measurable functions such that f (x) ≤ g(x) for all x ∈ X. Then∫

f dµ ≤
∫
g dµ.

Proof. Let P be an S−partition A1, . . . ,Am of X. Then

inf
Aj
f ≤ inf

Aj
g,

for each j ∈ [1,m]. Thus L(f ,P ) ≤ L(g,P ), and so
∫
f dµ ≤

∫
g dµ.

Theorem 124. Let (X,S ,µ) be a measure space and f : X → [0,∞] be
S−measurable. Then∫

f dµ = sup
{ m∑
j=1

cjµ(Aj ) |A1, . . . ,Am are disjoint sets in S ,

c1, . . . , cm ∈ [0,∞), and

f (x) ≥
m∑
j=1

cjχAj (x), ∀x ∈ X
}
.

We use this theorem to prove a central theorem which allows us to interchange
limits and integrals in certain circumstances.
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Theorem 125 (Monotone Convergence Theorem). Let (X,S ,µ) be a measure
space and 0 ≤ f1 ≤ f2 ≤ · · · be an increasing sequence of measurable functions.
Define f : X→ [0,∞] by

f (x) = lim
k→∞

fk(x).

Then

lim
k→∞

∫
fk dµ =

∫
f dµ.

Proof. We know f is measurable. Because fk(x) ≤ f (x) for all x ∈ X,
∫
fk dµ ≤∫

f dµ for each k ∈Z+. Thus

lim
k→∞

∫
fk dµ ≤

∫
f dµ.

To prove the other direction, let A1, . . . ,Am be disjoint sets in S and c1, . . . , cm ∈
[0,∞) are such that

f (x) ≥
m∑
j=1

cjχAj (x), ∀x ∈ X.

Let t ∈ (0,1). Then for k ∈Z+, let

Ek =

x ∈ X | fk(x) ≥ t
m∑
j=1

cjχAj (x)

 .
Then E1 ⊂ E2 ⊂ · · · is an increasing sequence of sets in S whose union equals
X. It follows that

lim
k→∞

µ(Aj ∩Ek) = µ(Aj ),

for each j ∈ [1,m], and

fk(x) ≥
m∑
j=1

tcjχAj∩Ek (x), ∀x ∈ X.

Thus ∫
fk dµ ≥ t

m∑
j=1

cjµ(Aj ∩Ek).

We take the limit as k→∞ of both sides to get

lim
k→∞

∫
fk dµ ≥ t

m∑
j=1

cjµ(Aj ).

Finally we take t → 1, and then we take the supremum of the resulting in-
equality over all S−partitions and c1, . . . , cm ∈ [0,∞), completing our proof.
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We conclude this section with a consequence of the Monotone Convergence
Theorem.

Theorem 126 (Fatou’s Lemma). Let (X,S ,µ) is a measure space, and f1, f2, . . .
is a sequence of nonnegative S−measurable functions on X. Define a function
f : X→ [0,∞] by f (x) = liminfk→∞ fk(x). Then∫

f dµ ≤ liminf
k→∞

∫
fk dµ.

14.2 Properties of Lebesgue Integral

In the previous section, we only considered nonnegative functions. How do
we integrate real-valued functions?

Definition 111 (f −plus; f −minus). Let f : X → [−∞,∞] be a function.
We define f + and f − from X→ [0,∞] by

f +(x) =

f (x), f (x) ≥ 0,

0, f (x) < 0
, f −(x) =

0, f (x) ≥ 0,

−f (x), f (x) < 0

Notice that using this notation,

f = f + − f −, and |f | = f + + f −.

Definition 112 (Lebesgue Integral of Real-Valued Function). Let (X,S ,µ)
be a measure space, and f : X→ [−∞,∞] an S−measurable function such
that at least one of

∫
f + dµ and

∫
f − dµ is finite. The Lebesgue integral of f

with respect to µ, denoted
∫
f dµ, is defined by∫

f dµ =
∫
f + dµ−

∫
f − dµ.

Of course, not every function is Lebesgue integrable. If we consider the Lebesgue
measure on R and f : R→R defined by

f (x) =

1, x ≥ 0

−1, x < 0
,

then
∫
f dm is not defined because

∫
f + dµ =∞, and

∫
f − dµ =∞ as well. The

Lebesgue integral should have the same properties as Riemann integration
does; otherwise it would be useless. And indeed, it does.



CHAPTER 14. LEBESGUE INTEGRATION 124

Theorem 127 (Properties of Lebesgue Integral). Let (X,S ,µ) be a measure
space.

(1) (Homogeneity): If f : X → [−∞,∞] is a function such that
∫
f dµ is de-

fined, and if c ∈R, then ∫
cf dµ = c

∫
f dµ.

(2) (Additivity): If f ,g : X → R are S−measurable functions such that∫
|f |dµ <∞ and

∫
|g |dµ <∞, then∫

(f + g)dµ =
∫
f dµ+

∫
g dµ.

(3) (Order-Preservation): If f ,g : X → R are S−measurable functions such
that

∫
f dµ and

∫
g dµ are defined, and f (x) ≤ g(x) for all x ∈ X, then∫

f dµ ≤
∫
g dµ.

(4) If f : X→ [−∞,∞] is a function such that
∫
f dµ is defined, then∣∣∣∣∣∫ f dµ

∣∣∣∣∣ ≤ ∫
|f |dµ.

Proof. (1) Suppose f is nonnegative and c ≥ 0. If P is an S−partition of X,
then L(cf ,P ) = cL(f ,P ). Thus

∫
cf dµ = c

∫
f dµ. If f takes on values in

[−∞,∞], then suppose c ≥ 0. Then∫
cf dµ =

∫
(cf )+ dµ−

∫
(cf )− dµ

=
∫
cf + dµ−

∫
cf − dµ

= c
(∫

f + dµ−
∫
f − dµ

)
= c

∫
f dµ.
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If c < 0, then −c > 0, and so∫
cf dµ =

∫
(cf )+ dµ−

∫
(cf )− dµ

=
∫

(−c)f − dµ−
∫

(−c)f + dµ

= (−c)
(∫

f − dµ−
∫
f + dµ

)
= c

∫
f dµ.

(2) Since
(f + g)+ − (f + g)− = f + g = f + − f − + g+ − g−,

thus
(f + g)+ + f − + g− = (f + g)− + f + + g+.

Since both sides of the equation are sums of nonnegative functions, we
integrate both sides with respect to µ and get∫

(f +g)+ dµ+
∫
f − dµ+

∫
g− dµ =

∫
(f +g)− dµ+

∫
f + dµ+

∫
f + dµ+

∫
g+ dµ.

We rearrange and get∫
(f + g)+ dµ−

∫
(f + g)− dµ =

∫
f + dµ−

∫
f − dµ+

∫
g+ dµ−

∫
g− dµ,

where the left side is not of the form ∞−∞ because (f + g)+ ≤ f + + g+,
and (f + g)− ≤ f − + g−. Hence we rewrite our equation as∫

(f + g)dµ =
∫
f dµ+

∫
g dµ.

(3) Suppose
∫
|f |dµ <∞ and

∫
|g |dµ <∞. Additivity and homogeneity with

c = −1 imply that ∫
g dµ−

∫
f dµ =

∫
(g − f )dµ.

The last integral is nonnegative because g(x)− f (x) ≥ 0 for all x ∈ X.
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(4) Because
∫
f dµ is defined, f is an S−measurable function and at least

one of
∫
f + dµ and

∫
f − dµ is finite. Then∣∣∣∣∣∫ f dµ

∣∣∣∣∣ ≤ ∣∣∣∣∣∫ f + dµ−
∫
f − dµ

∣∣∣∣∣
≤

∫
f + dµ+

∫
f − dµ

=
∫

(f + + f −)dµ

=
∫
|f |dµ.

14.3 Limit Integral Theorems

Definition 113 (Lebesgue Integral over Subset). Let (X,S ,µ) be a mea-
sure space and E ∈ S . If f : X → [−∞,∞] is an S−measurable function,
then

∫
E
f dµ is defined by ∫

E
f dµ =

∫
χEf dµ,

if the right side exists. Otherwise,
∫
E
f dµ is undefined.

Alternatively, we can think of this as∫
f |E dµE ,

where µE is the measure restricting µ to the elements of S that are contained
in E. We can bound integrals over subsets.

Theorem 128. Let (X,S ,µ) be a measure space, and E ∈ S . Let f : X→ [−∞,∞]
be a function such that

∫
E
f dµ is defined. Then∣∣∣∣∣∫

E
f dµ

∣∣∣∣∣ ≤ µ(E)sup
E
|f |.
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Proof. Let c = supE |f |. Then∣∣∣∣∣∫
E
f dµ

∣∣∣∣∣ =
∣∣∣∣∣∫ χEf dµ

∣∣∣∣∣
≤

∫
χE |f |dµ

≤
∫
cχEdµ

= cµ(E).

Theorem 129 (Bounded Convergence Theorem). Let (X,S ,µ) be a measure
space with µ(X) < ∞. Suppose fn : X → R is a sequence of S−measurable
functions for n = 1,2, . . . that converges pointwise on X to some f : X → R. If
there exists c ∈ (0,∞) such that for all k ∈N and x ∈ X,

|fk(x)| ≤ c,

then

lim
k→∞

fk dµ =
∫
f dµ.

Proof. We know f is measurable. Suppose c satisfies the hypothesis of this
theorem. Take ε > 0. Then by Egorov’s Theorem, there exists E ∈ S such that
µ(X \E) < ε

4c , and fn : X→R converges uniformly to f on E. Now∣∣∣∣∣∫ fk dµ−
∫
f dµ

∣∣∣∣∣ =

∣∣∣∣∣∣
∫
X\E

fk dµ−
∫
X\E

f dµ+
∫
E

(fk − f )dµ

∣∣∣∣∣∣
≤

∫
X\E
|fk |dµ+

∫
X\E
|f |dµ+

∫
E
|fk − f |dµ

<
ε
2

+µ(E)sup
E
|fk − f |.

Since fn → f uniformly on E, and µ(E) < ∞, the right side of the inequality
above is less than ε for k sufficiently large.

Consider f ,g : X → [−∞,∞], measurable functions on our measure space
(X,S ,µ). If

µ({x ∈ X | f (x) , g(x)}) = 0,

then
∫
f dµ =

∫
g dµ by definition of Lebesgue integral. This tells us that what-

ever happens on a set of measure zero, it does not matter.
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Definition 114 (Almost Every). Let (X,S ,µ) be a measure space. A set
E ∈ S is said to contain almost every element of X if µ(X \E) = 0.

As an example, almost every real number is irrational, because m(Q) = 0.
Many theorems about integrals can be relaxed so that the hypotheses apply
almost everywhere as opposed to everywhere.

Theorem 130. Let (X,S ,µ) be a measure space. Let g : X → [0,∞] be
S−measurable, and

∫
g dµ < ∞. Then for every ε > 0, there exists δ > 0 such

that ∫
B
g dµ < ε

for every set B ∈ S such that µ(B) < ε.

This theorem tells us that if a nonnegative function has a finite integral, then
its integral over all small sets (in the sense of measure) is small.

Proof. Let ε > 0. Let h : X → [0,∞) be a simple S−measurable function such
that 0 ≤ h ≤ g and ∫

g dµ−
∫
hdµ <

ε
2
.

Define
H = max{h(x) | x ∈ X},

and pick δ > 0 such that Hδ < ε
2 . Suppose B ∈ S and µ(B) < δ. Then∫

B
g dµ =

∫
B

(g − h)dµ+
∫
B
hdµ

≤
∫

(g − h)dµ+Hµ(B)

<
ε
2

+Hδ

< ε.

We can also get around the requirement that the measure of the entire
space must be finite, like for example in Egorov’s Theorem, by restriction at-
tention to a key set of finite measure.

Theorem 131. Let (X,S ,µ) be a measure space, and let g : X → [0,∞] be
S−measurable such that

∫
g dµ < ∞. Then for every ε > 0, there exists E ∈ S

such that µ(E) <∞ and ∫
X\E

g dµ < ε.‘
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Proof. Let ε > 0. Let P be an S−partition A1, . . . ,Am of X such that∫
g dµ < ε+L(g,P ).

Let E be the union of those Aj such that infAj f > 0. Then µ(E) < ∞ because
otherwise L(g,P ) =∞, contradicting our hypothesis. Then∫

X\E
g dµ =

∫
g dµ−

∫
χEg dµ

< (ε+L(g,P ))−L(χEg,P )

= ε.

Now we want to generalize both the Monotone Convergence Theorem and the
Bounded Convergence Theorem, as their requirements are too stringent. We
use the idea of almost every to be able to do this.

Theorem 132 (Dominated Convergence Theorem). Let (X,S ,µ) be a measure
space and let f : X→ [−∞,∞] be S−measurable, and fn : X→R for n = 1,2, . . .
are S−measurable functions such that

lim
k→∞

fk(x) = f (x),

for almost every x ∈ X. If there exists an S−measurable function g : X→ [0,∞]
such that ∫

g dµ <∞, and |fk(x)| ≤ g(x),

for all k ∈Z+, and almost every x ∈ X, then we say g dominates f , and

lim
k→∞

∫
fk dµ =

∫
f dµ.

Proof. Let E ∈ S . Then∣∣∣∣∣∫ fk dµ−
∫
f dµ

∣∣∣∣∣ =

∣∣∣∣∣∣
∫
X\E

fk dµ−
∫
X\E

f dµ−
∫
E
f dµ

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫
X\E

fk dµ

∣∣∣∣∣∣−
∣∣∣∣∣∣
∫
X\E

f dµ

∣∣∣∣∣∣−
∣∣∣∣∣∫
E
f dµ

∣∣∣∣∣
≤ 2

∫
X\E

g dµ+
∣∣∣∣∣∫
E
dµ−

∫
E
f dµ

∣∣∣∣∣ .
We have to consider two cases: First, if µ(X) <∞, then let ε > 0. We know that
there exists δ > 0 such that

∫
B
g dµ < ε

4 for every set B ∈ S such that µ(B) < δ.
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By Egorov’s Theorem, there exists a set E ∈ S such that µ(X \E) < δ and fn→ f
uniformly on E. Now∣∣∣∣∣∫ fk dµ−

∫
f dµ

∣∣∣∣∣ < ε2 +
∣∣∣∣∣∫
E

(fk − f )dµ
∣∣∣∣∣ .

Because fn→ f uniformly on E and µ(E) <∞, the last term on the right is less
than ε

2 for sufficiently large k. Thus

lim
k→∞

fk dµ =
∫
f dµ.

Next, if µ(X) =∞. Let ε > 0. Again we know that there exists E ∈ S such that
µ(E) <∞ and ∫

X\E
g dµ <

ε
4
.

This gives us that ∣∣∣∣∣∫ fk dµ−
∫
f dµ

∣∣∣∣∣ < ε2 +
∣∣∣∣∣∫
E
fk dµ−

∫
E
f µ

∣∣∣∣∣ .
Using the first case applied to the sequence f1|E , f2|E , . . . , the last term on the
right is less than ε

2 for all sufficiently large k. Thus

lim
k→∞

fk(x)dµ =
∫
f dµ.

Let’s return to the Riemann integral for a second. How does it interact with
our newly-developed tools?

Theorem 133. Suppose a < b and that f : [a,b] → R is bounded. Then f is
Riemann integrable iff

m∗({x ∈ [a,b] | f is continuous at x) = 0.

Furthermore, if f is Riemann integrable, then f is Lebesgue integrable and∫ b

a
f =

∫
[a,b]

f dm.

Definition 115 (
∫ b
a
f ). Suppose −∞ ≤ a < b ≤ ∞, and f : (a,b) → R is
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Lebesgue measurable. Then∫ b

a
f or

∫ b

a
f (x)dx are equivalent to

∫
(a,b)

f dm,

and ∫ a

b
f = −

∫ b

a
f .

Now recall our old friend the L1−norm. We can redefine it in terms of a mea-
sure, and when we do so we also slightly change the notation.

Definition 116 (L1−norm; Lebesgue Space). Let (X,S ,µ) be a measure
space and f : X → [−∞,∞] be S−measurable. Then the L1−norm of f ,
denoted ‖f ‖1, is defined by

‖f ‖1 =
∫
|f |dµ.

The Lebesgue space L1(µ) is defined by

L1(µ) = {f | f is S−measurable from X to R and ‖f ‖1 <∞}.

We can approximate functions in the Lebesgue space in three ways:

• Simple functions

• Step functions

• Continuous functions

Explicitly, what is an example of a function in L1(µ)? Suppose E1, . . . ,En are
disjoint subsets of X in our measure space, and that a1, . . . , an are distinct
nonzero real numbers. Then

a1χE1
+ · · ·+ anχEn ∈ L

1(µ),

if and only if Ek ∈ S and µ(Ek) <∞ for all k ∈ [1,n]. Furthermore, the L1−norm
will be

‖a1χE1
+ · · ·+ anχEn‖1 = |a1|µ(E1) + · · ·+ |an|µ(En).

Theorem 134. Let µ be a measure and f ∈ L1(µ). Then for every ε > 0, there
exists a simple function g ∈ L1(µ) such that

‖f − g‖1 < ε.
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Proof. Let ε > 0. Then there exists simple functions g1, g2 ∈ L1(µ) such that
0 ≤ g1 ≤ f + and 0 ≤ g2 ≤ f −, and∫

(f + − g1)dµ <
ε
2
,

∫
(f − − g2)dµ <

ε
2
.

Let g = g1 − g2. Then g is another simple function in L1(µ). Hence

‖f − g‖1 = ‖(f + − g1)− (f − − g2)‖1

=
∫

(f + − g1)dµ+
∫

(f − − g2)dµ

< ε.

When we say L1(R), this means L1(m), where m is the Lebesgue measure on
either the Borel subsets of R or the Lebesgue measurable subsets of R. When
in L1(R), the notation ‖f ‖1 denotes the integral of the absolute value of f with
respect to the Lebesgue measure on R, as expected.

Definition 117 (Step Function). A step function is a function g : R→R of
the form

g = a1χI1 + · · ·+ anχIn ,

where I1, . . . , In are intervals of R, and a1, . . . , an ∈R≥0.

If g is a step function, and I1, . . . , In are disjoint, then

‖g‖1 = |a1||I1|+ · · ·+ |an||In|.

In particular,
g ∈ L1(µ)⇐⇒ I1, . . . , In are bounded

Theorem 135. Let f ∈ L1(R). Then for every ε > 0, there exists a step function
g ∈ L1(R) such that

‖f − g‖1 < ε.

Finally, Luzin’s Theorem gives us a way to approximate Borel measurable
functions by continuous functions.

Theorem 136. Let f ∈ L1(R). Then for every ε > 0, there exists a continuous
function g : R→R such that

‖f − g‖1 < ε,

and {x ∈R | g(x) ,} is a bounded set.
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14.4 Uniform Integrability

We conclude this chapter on Lebesgue integration by establishing, for func-
tions that are integrable over a set of finite measure, a more general criterion
for justifying passage of the limit under the integral sign.

Theorem 137. Let E ⊂ R be such that µ(E) <∞, and let δ > 0. Then E is the
disjoint union of a finite collection of sets , each of which has measure less
than δ.

Proof. By the continuity of measure,

lim
n→∞

µ(E \ [−n,n]) = µ(∅) = 0.

Choose some k ∈ Z+ such that m(E \ [−k,k]) < δ. By choosing a fine enough
partition of [−k,k], express E∩[−k,k] as the disjoint union of a finite collection
of sets, each of which has measure less than δ.

Theorem 138. Let (X,S ,µ) be a measure space and let f ∈ L1(µ). If f is inte-
grable over X, then for each ε > 0, there exists some δ > 0 such that

if E ⊂ X is measurable and µ(E) < δ, then
∫
E
|f |dµ < ε.

Definition 118 (Uniform Integrability). A family F of measurable func-
tions on X is said to be uniformly integrable over E ⊂ X if for each ε > 0,
there exists δ > 0 such that for each f ∈ F ,

if E ⊂ X is measurable and µ(E) < δ, then
∫
E
|f |dµ < ε.

As an example, say we take

F = {f | f is measurable on E and |f | ≤ g on E}.

Theorem 139. Let fn : E → R for n = 1,2, · · · <∞ be a sequence of integrable
functions over E. Then fn is uniformly integrable.



15Measure-Theoretic Differentiation

To develop a rigorous theory of differentiation, we must first cover a few es-
sential lemmas/theorems that serve as the foundation for an almost-everywhere
version of the Fundamental Theorem of Calculus.

15.1 Preliminaries

Theorem 140 (Markov’s Inequality). Let (X,S ,µ) be a measure space and h ∈
L1(µ). Then

µ({x ∈ X | |h(x)| ≥ c}) ≤ 1
c
‖h‖1,

for all c > 0.

Proof. Let c > 0. Then

µ({x ∈ X | |h(x)| ≥ c}) =
1
c

∫
{x∈X ||h(x)|≥c}

cdµ

≤ 1
c

∫
{x∈X ||h(x)|≥c}

|h|dµ

≤ 1
c
‖h‖1.

Now, intuitvely speaking, the notation n ∗ I , where I is a bounded nonempty
open interval, is exactly what we expect it to be: another interval that has
n times the length of I that is centered at the same spot. For example, if
I = (0,10), then 3 ∗ I = (−10,20).

Theorem 141 (Vitali Covering Lemma). Let I1, . . . , In be a list of bounded
nonempty open intervals of R. Then there exists a disjoint sublist Ik1

, . . . , Ikm
such that

I1 ∪ · · · ∪ In ⊂ (3 ∗ Ik1
)∪ · · · ∪ (3 ∗ Ikm ).

Example 19. Let n = 4, and

I1 = (0,10), I2 = (9,15), I3 = (14,22), I4 = (21,31).
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Then

3 ∗ I1 = (−10,20), 3 ∗ I2 = (3,21), 3 ∗ I3 = (6,30), 3 ∗ I4 = (11,41).

Thus
I1 ∪ I2 ∪ I3 ∪ I4 ⊂ (3 ∗ I1)∪ (3 ∗ I4).

Proof. Let k1 be such that

|Ik1
| = max{|I1|, . . . , |In|}.

Definition 119 (Hardy-Littlewood Maximal Function). Let h : R → R

be a Lebesgue measurable function. Then the Hardy-Littlewood maximal
function of h is the function h∗ : R→ [0,∞] defined by

h∗(b) = sup
t≥0

1
2t

∫ b+t

b−t
|h|.

To put this somewhat arbitrary construction in words, h∗(b) gives us the supre-
mum over all bounded intervals centered at b of the average of |h| on those
intervals. To explicitly calculate this function for something we know, if we
let h(x) = χ[0,1](x), then

h∗(b) =


1

2(1−b) , b ≤ 0

1, 0 < b < 1
1

2b , b ≥ 1

.

Theorem 142 (Hardy-Littlewood Maximal Inequality). Suppose h ∈ L1(R).
Then

m({b ∈R | h∗(b) > c}) ≤ 3
c
‖h‖1,

for every c > 0.

Proof. Let F be a closed, bounded subset of {b ∈R | h∗(b) > c}. We want to show
that |F| ≤ 3

c

∫∞
−∞ |h|. For each b ∈ F, there exists tb > 0 such that

1
2tb

∫ b+tb

b−tb
|h| > c.

Clearly
F ⊂

⋃
b∈F

(b − tb,b+ tb).
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By Heine-Borel, this open cover must have a finite subcover. In other words,
there exists b1, . . . , bn ∈ F such that

F ⊂ (b1 − tb1
,b1 + tb1

)∪ · · · ∪ (bn − tbn ,bn + tbn ).

We label the above intervals as I1, . . . , In. By the Vitali Covering Lemma, there
exists a disjoint sublist Ik1

, . . . , Ikm such that

I1 ∪ · · · ∪ In ⊂ (3 ∗ Ik1
)∪ · · · ∪ (3 ∗ Ikm ).

Hence

|F| ≤ |I1 ∪ · · · ∪ In|
≤ |(3 ∗ Ik1

)∪ · · · ∪ (3 ∗ Ikm )|
≤ |3 ∗ Ik1

|+ · · ·+ |3 ∗ Ikm |
= 3(|Ik1

|+ · · ·+ |Ikm |)

<
3
c

∫
Ik1

|h|+ · · ·+
∫
Ikm

|h|


≤ 3
c

∫ ∞
−∞
|h|.

15.2 Derivatives of Integrals

Theorem 143 (Lebesgue Differentiation Theorem; Version 1). Let f ∈ L1(R).
Then

lim
t→0

1
2t

∫ b+t

b−t
|f − f (b)| = 0

for almost every b ∈R.

This tells us that the average amount by which a function in L1(R) differs
from its values is small almost everywhere on small intervals.

Proof.

We already saw the Fundamental Theorem of Calculus before, but our
requirements have now been loosened that f only needs to be Lebesgue mea-
surable, and its absolute value must have a finite Lebesgue integral.
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Theorem 144 (Fundamental Theorem of Calculus). Let f ∈ L1(R). Define
g : R→R by

g(x) =
∫ x

−∞
f .

Suppose b ∈R and f is continuous at b. Then g is differentiable at b and

g ′(b) = f (b).

Proof. If t , 0, then∣∣∣∣∣g(b+ t)− g(b)
t

− f (b)
∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∫ b+t
−∞ f −

∫ b
−∞ f

t
− f (b)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∫ b+t
b

f

t
− f (b)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∫ b+t
b

(f − f (b))

t

∣∣∣∣∣∣∣∣
≤ sup
{x∈R||x−b|<|t|}

|f (x)− f (b)|.

If ε > 0, then by continuity of f at b, the last quantity is less than ε for t
sufficiently close to 0. Thus g is differentiable at b, and g ′(b) = f (b).

Since a function in L1(R) need not be continuous anywhere, the Fundamental
Theorem of Calculus might provide no information about differentiating the
integral of such a function. This means we need another theorem.

Theorem 145 (Lebesgue Differentiation Theorem; Version 2). Let f ∈ L1(R).
Define g : R→R by

g(x) =
∫ x

−∞
f .

Then g ′(b) = f (b) for almost every b ∈R.

Proof. Let t , 0. Then∣∣∣∣∣g(b+ t)− g(b)
t

− f (b)
∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∫ b+t
b

(f − f (b))

t

∣∣∣∣∣∣∣∣
≤ 1
t

∫ b+t

b
|f − f (b)|

≤ 1
t

∫ b+t

b−t
|f − f (b)|,
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for all b ∈R. By the first version of the Lebesgue Differentiation Theorem,

Theorem 146. There does not exist a Lebesgue measurable set E ⊂ [0,1] such
that

m(E ∩ [0,b]) =
b
2
,

for all b ∈ [0,1].

Proof. Suppose to the contrary that there did exist a Lebesgue measurable set.
Define g : R→R by

g(b) =
∫ b

−∞
χE .

Thus g(b) = b
2 for all b ∈ [0,1]. Hence g ′(b) = 1

2 for all b ∈ [0,1]. The Lebesgue
Differentiation Theorem implies that g ′(b) = χE(b) for almost every b ∈ R.
However, χE never takes on the value 1

2 , which contradicts the conclusion
before.

Theorem 147. Let f ∈ L1(R). Then for almost every b ∈R,

f (b) = lim
t→0

1
2t

∫ b+t

b−t
f .

This theorem tells us that a function in L1(R) is equal almost everywhere to
the limit of its average over small intervals. It holds at every number b at
which f is continuous. Remarkably, even if f is discontinuous everywhere,
the conclusion still holds for almost every real number b.

Proof. Let t > 0. Then∣∣∣∣∣∣
(

1
2t

∫ b+t

b−t
f

)
− f (b)

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1
2t

∫ b+t

b−t
(f − f (b))

∣∣∣∣∣∣
≤ 1

2t

∫ b+t

b−t
|f − f (b)|.

We conclude by applying the Lebesgue Differentiation Theorem.

Definition 120 (Density). Let E ⊂ R. The density of E at a number b ∈ R
is

lim
t→0

m(E ∩ (b − t,b+ t))
2t

,

if this exists, and otherwise is undefined.
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The density of [0,1] at b will be
1, b ∈ (0,1)
1
2 , b = 0 or b = 1

0, otherwise

Theorem 148 (Lebesgue Density Theorem). Let E ⊂R be a Lebesgue measur-
able set. Then the density of E is 1 at almost every element of E and is 0 at
almost every element of R \E.



16Intro to Functional Analysis

We take a survey of select functional analysis topics in this chapter. This
chapter assumes knowledge of complex analysis (122A) and linear algebra
(108AB).

16.1 Banach Spaces

Definition 121 (Sequence Space; `p).

Definition 122 (Complete Metric Space). A metric space (M,d) is called
complete if every Cauchy sequence inM converges to some element ofM.

Not every metric that we think of is complete. The metric space (Q,d), where
d(x,y) = |x − y|, is not complete. To see this, for k ∈Z+, let

xk =
1

101! +
1

102! + · · ·+ 1
10k!

.

If j < k, then

|xk − xj | =
1

10(j+1)!
+ · · ·+ 1

10k!
<

2

10(j+1)!
.

Thus x1,x2, . . . is a Cauchy sequence in Q. However, x1,x2, . . . does not con-
verge to an element of Q because the limit of this sequence would have deci-
mal expansion 0.110001000000000000000001 . . . that is neither a terminating
nor repeating decimal.

Definition 123 (Banach Space). A complete normed vector space is called
a Banach space.

Some examples and nonexamples:

• The vector space C([0,1]) with the norm defined by

‖f ‖ = sup
[0,1]
|f |,
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the C−norm, is a Banach space. In other words, (C([0,1]),‖ · ‖C([0,1]) is a
Banach space.

• The vector space `1 with the norm

‖(a1, a2, . . . )‖1 =
∞∑
k=1

|ak |

is a Banach space.

• The normed space (C([0,1]),‖ · ‖1) is not a Banach space.

Theorem 149. Let V be a normed space. Then V is a Banach space if and only
if

∑∞
k=1 gk converges for every sequence g1, g2, . . . in V such that

∑∞
k=1 ‖gk‖ <∞.

Proof. (=⇒) : Let V be a Banach space. Let g1, g2, . . . be a sequence in V such
that

∑∞
k=1 ‖gk‖ < ∞. Suppose ε > 0. Let n ∈ Z+ such that

∑∞
m=n ‖gm‖ < ε. For

j ∈Z+, let fj denote the partial sum defined by

fj = g1 + · · ·+ gj .

If k > j ≥ n, then

‖fk − fj‖ = ‖gj+1 + · · ·+ gk‖

≤ ‖gj+1‖+ · · ·+ ‖gk‖

≤
∞∑
m=n

‖gm‖

< ε.

Thus f1, f2, . . . is a Cauchy sequence in V . Because V is Banach, this sequence
converges to some element of V , which is precisely what it means for

∑∞
k=1 gk

to converge.
(⇐=) : Suppose

∑∞
k=1 gk converges for every sequence g1, g2, . . . in V such that∑∞

k=1 ‖gk‖ < ∞. Suppose f1, f2, . . . is a Cauchy sequence in V . It suffices to
show that some subsequence of this converges. Dropping to a subsequence
and setting f0 = 0, we can assume that

∞∑
k=1

‖fk − fk−1‖ <∞.

Hence
∑∞
k=1(fk − fk−1) converges. The partial sum of this series after n terms is

fn. Thus limn→∞ fn exists, completing the proof.

Recall from linear algebra what a linear map, or linear transformation is. If
instead of two vector spaces, we consider normed vector spaces, then we form
a new type of linear map.
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Definition 124 (Bounded Linear Map). Suppose V and W are normed
vector spaces and T : V → W is a linear map. The norm of T , denoted
‖T ‖, is defined by

‖T ‖ = sup{‖T (f )‖ | f ∈ V and ‖f ‖ ≤ 1}.

We call T bounded if ‖T ‖ < ∞, and we denote the set of bounded linear
maps from V to W as B(V ,W ).

Consider the Banach space (C([0,3]),‖ · ‖C([0,3]). We define T : C([0,3]) →
C([0,3]) by

T (f (x)) = x2f (x).

Then T is a bounded linear map, and ‖T ‖ = 9.

Theorem 150. Let V and W be normed spaces. Then ‖S + T ‖ ≤ ‖S‖+ ‖T ‖ and
‖αT ‖ = |α|‖T ‖ for all S,T ∈ B(V ,W ) and all α ∈ F . Furthermore, the function
‖ · ‖ is a norm on B(V ,W ).

Proof. Let S,T ∈ B(V ,W ). Then

‖S + T ‖ = sup{‖(S + T )(f )‖ | f ∈ V and ‖f ‖ ≤ 1}
≤ sup{‖S(f )‖+ ‖T (f )‖ | f ∈ V and ‖f ‖ ≤ 1}
≤ sup{‖S(f )‖ | f ∈ V and ‖f ‖ ≤ 1}
+ sup{‖T (f )‖ | f ∈ V and ‖f ‖ ≤ 1}
= ‖S‖+ ‖T ‖.

Theorem 151. Let V be a normed space andW a Banach space. Then B(V ,W )
is a Banach space.

Proof. Let T1,T2, . . . be a Cauchy sequence in B(V ,W ). If f ∈ V , then

‖Ti(f )− Tk(f )‖ ≤ ‖Tj − Tk‖‖f ‖,

which implies that T1(f ),T2(f ), . . . is a Cauchy sequence in W . Because W is
Banach, this sequence has a limit in W , which we call T (f ). We have now
defined a function T : V →W , which is a linear map. Clearly for each f ∈ V ,

‖T (f )‖ ≤ sup{‖Tk(f ) | k ∈Z+}
≤ (sup{‖Tk‖ | k ∈Z+)‖f ‖.
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Thus T ∈ B(V ,W ). However, we still need to show that limk→∞ ‖Tk − T ‖ = 0.
Let ε > 0, and let n ∈ Z

+ be such that ‖Ti − Tk‖ < ε for all j ≥ n and k ≥ n.
Suppose j ≥ n and f ∈ V . Then

‖(Tj − T )(f )‖ = lim
k→∞
‖Ti(f )− Tk(f )‖

≤ ε‖f ‖.

Thus ‖Tj − T ‖ ≤ ε, completing our proof.

Theorem 152. A linear map from one normed vector space to another normed
vector space is continuous if and only if it is bounded.

Proof. Let V and W be normed vector spaces and let T : V → W be a linear
map.
(=⇒) : Suppose T is continuous but not bounded. Then there exists a sequence
f1, f2, . . . in V such that ‖fk‖ ≤ 1 for all k ∈ Z

+ and ‖T (fk)‖ → ∞ as k → ∞.
Hence

lim
k→∞

fk
‖T (fk)‖

= 0, T

(
fk

‖T (fk)‖

)
=

T (fk)
‖T (fk)‖

6→ 0.

However, this implies that T is not continuous, a contradiction.
(⇐=) : Suppose T is bounded. Let f ∈ V and f1, f2, . . . is a sequence in V such
that limk→∞ fk = f . Then

‖T (fk)− T (f )‖ = ‖T (fk − f )‖
≤ ‖T ‖‖fk − f ‖.

Thus limk→∞T (fk) = T (f ), and so T is continuous.

Recall that a linear functional on a vector space V is a linear map from V to
F . We introduce the following notation: if V is a real vector space, U is a
subspace of V , and h ∈ V , then

U +Rh = {f +αh | f ∈U and α ∈R}.

Theorem 153 (Extension Lemma). Let V be a real normed vector space, and
let U be a subspace of V . Let ψ : U → R is a bounded linear functional.
Suppose h ∈ V \U . Then ψ can be extended to a bounded linear functional
ϕ :U +Rh→R such that ‖ϕ‖ = ‖ψ‖.


