
PSTAT 160B Lecture Notes
Professor: Dr. Moritz Voss

Spring 2020

Bryan Xu

1



Introduction

These are the lecture notes for PSTAT 160B - Applied Stochastic Processes
II, from the Spring 2020 quarter taught by Moritz Voss. This course cov-
ers continuous models. Continuous time stochastic processes: Poisson pro-
cess, Markov chains, Renewal process, Brownian motion, including simula-
tion of these processes. Applications to Black-Scholes model, insurance and
ruin problems and related topics.
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1Poisson Processes

What is our motivation? We want to model the occurrence, or arrival, of
events in continuous time and count them. For example, text messages ar-
riving on a phone throughout a day, claims reported to an insurance company
over a year, visits of a website over an hour...etc. We can model these with the
Poisson process.

1.1 Introduction

Definition 1 (Counting Process). A counting process (Nt)t≥0 is a collection
of non-negative integer-valued random variables such that if 0 ≤ s ≤ t,
then Ns ≤Nt .

Here, Nt is the number of arrivals that occur by time t, or the number of
events in [0, t]. Typically, we have that N0 = 0. Note that for each t ≥ 0, Nt
is a random variable, and thus (Nt)t≥0 is a continuous-time, integer-valued
stochastic process.

Here we show an example of a counting process:

Thus for all 0 ≤ s ≤ t, Nt −Ns is equal to the number of events in (s, t].
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Definition 2 (Poisson Process). A Poisson process with parameter λ > 0 is
a counting process (Nt)t≥0 with the following properties:

(1) N0 = 0

(2) (Independent Increments)
For all n ∈ N, 0 ≤ t1 < t2 < · · · < tn−1 < tn, the random variables
Nt2 −Nt1 , Nt3 −Nt2 , . . . , Ntn −Ntn−1

are independent.

(3) (Stationary Increments)
For all 0 ≤ s < t, the random variable Nt −Ns is Poisson distributed
with parameter λ(t − s).

In other words, a Poisson process is a counting process for which increments
are independent and Poisson distributed random variables. Some important
properties Poisson processes arise from the definition:

• Nt =Nt − 0 =Nt −N0 ∼ Poisson(λt), for all t > 0

• E[Nt] = λt, or in other words,

E[Nt]
t

= λ,

where λ is called the arrival rate.

This means that, for example, N7 − N4, N4 − N2, N2 − N1 are independent
random variables.

Proposition 1. Let (Nt)t≥0 be a Poisson process with parameter λ > 0. For
s > 0, define

Ñt =Nt+s −Ns t ≥ 0

Then (Ñt)t≥0 is again a Poisson process with parameter λ.

We call (Nt+s − Ns)t≥0 a translated process, and it has the same probabilistic
properties as (Nt)t≥0.

Example 1. Starting at 6 a.m., students arrive at the gym according to a Pois-
son process at a rate of 30 students per hour. Find the probability that more
than 65 students arrive between 9 and 11 a.m.

Solution. We have that t = 0 is 6 a.m., so 9 a.m. corresponds to t = 3 and 11
a.m. corresponds to t = 5. Thus we want to find P[N5 −N3 > 65]. We use the
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properties of Poisson process then to get

P[N5 −N3 > 65] = P[N2 > 65]

= 1−P[N2 ≤ 65]

= 1−
65∑
k=0

P[N2 = k] (As N2 ∼ Poisson(2λ) = Poisson(60))

= e−60 · (60)k

k!
≈ 0.2355

Example 2. You receive text messages starting at 10 a.m. every morning at
the rate of 10 messages per hour according to a Poisson process.

(a) Find the probability that you will receive exactly 18 messages by noon
and 70 messages by 5 p.m.

(b) Given that you received 18 messages by noon, find the probability that
you will receive 70 messages by 5 p.m.

Solution. (a) We are trying to find P[N2 = 18, N7 = 70].

P[N2 = 18, N7 = 70] = P[N2 = 18, N7 −N2 = 62]

= P[N2 = 18] ·P[N7 −N2 = 62]

= e−2λ · (2λ)18

18!
· e−5λ · (5λ)52

52!
= (Plug in λ = 10)

= 0.0045

(b) We are trying to find P[N5 = 70 |N2 = 18].

P[N5 = 70 |N2 = 18] =
P[N2 = 18, N7 = 70]

P[N2 = 18]

=
P[N2 = 18] ·P[N7 −N2 = 52]

P[N2 = 18]

= P[N5 = 52]

= 0.0531
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1.2 Arrival Times

Let (Nt)t≥0 denote a Poisson process with parameter λ > 0. Let X1 denote
the time of the first arrival, X2 the waiting time between the first and second
arrival, and so on. Can we say something about the distribution of X1, X2, . . .?
Are they necessarily independent?

Definition 3 (Poisson Process v2). Let X1,X2, . . . be a sequence of iid ex-
ponential random variables with parameter λ > 0. For t > 0, let

Nt = max{n ≥ 1 : X1 + · · ·+Xn ≤ t}

with N0 = 0. Then (Nt)t≥0 defines a Poisson process with parameter λ > 0.
Let

Sn = X1 + · · ·+Xn, n = 1,2, . . .

We call S1,S2, . . . the arrival times of the process, where Sk is the time of
the k-th arrival. Furthermore,

Xk = Sk − Sk−1 k = 1,2, . . .

is the interarrival time between the (k−1)-th and k-th arrival, with S0 = 0.

The two definitions of Poisson process are mathematically equivalent. Why?
Because a Poisson process is just a counting process for which interarrival
times are independent and identically distributed exponential random vari-
ables.

Definition 4 (Memoryless). A random variable X is memoryless if, for all
s, t > 0, we have

P[X > s+ t | X > s] = P[X > t]

The exponential distribution is the only continuous distribution which is mem-
oryless.
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Proposition 2. Let X1, . . . ,Xn be independent exponential random variables
with parameters λ1, . . . ,λn. Let M = min{X1, . . . ,Xn}.

(a) For t > 0 we have
P[M > t] = e−t(λ1+···+λn)

That is, M has exponential distribution with parameter λ1 + · · ·+λn.

(b) For k = 1, . . . ,n we have

P[M = Xk] =
λk

λ1 + · · ·+λn

Proof. LetX1 ∼ Exp(λ1), . . . ,Xn ∼ Exp(λn) be independent, andM = min{X1, . . . ,Xn}.

(a) We get that

P[M > t] = P[min{X1, . . . ,Xn} > t]
= P[X1 > t, . . . ,Xn > t]

= P[X1 > t] · · · · ·P[Xn > t]

= e−λ1t · · · · · e−λnt

= e−(λ1+···+λn)t

Then the CDF of M, FM (t), is given by

FM (t) = P[M ≤ t]
= 1−P[M > t]

= 1− e−(λ1+···+λn)t

Thus, M ∼ Exp(λ1 + · · ·+λn).

(b) For k ∈ [1,n],

P[M = XK ] = P[min{X1, . . . ,Xn} = Xk]
= P[X1 ≥ Xk , . . . ,Xn ≥ Xk]

=
∫ ∞

0
P[X1 ≥ Xk , . . . ,Xn ≥ Xk | Xn = t] · fXk (t)dt
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Proposition 3. For n = 1,2, . . . let Sn be the time of the n-th arrival in a Poisson
process with parameter λ. Then Sn has a gamma distribution with parameters
n and λ. The density function of Sn is given by

fSn(t) =
λntn−1e−λt

(n− 1)!
, t > 0

The mean and variance are

E[Sn] =
n
λ
, Var[Sn] =

n

λ2

Example 3. A transit center services three lines, 24X, 12X, and 20. The buses
on each line arrive at the transit center according to three independent Poisson
processes. On average, there is the 24X every 10 minutes, the 12X every 15
minutes, and the line 20 every 20 minutes.

(a) When you arrive at the transit center, what is the probability that the
first bus that arrives is the 12X?

(b) How long will you wait, on average, before some bus arrives?

(c) You have been waiting 20 minutes for the 24X and have watched three
line 20 buses go by. What is the expected additional time you will wait
for your bus 24X?

Solution. We have three independent Poisson processes:

N (1) : counting 24X with λ(1), X
(1)
1 : arrival time of the 1st 24X

N (2) : counting 12X with λ(2), X
(2)
1 : arrival time of the 1st 12X

N (3) : counting 20 with λ(3), X
(3)
1 : arrival time of the 1st 20

We are also given/know

E[X(1)
1 ] = 10, E[X(2)

1 ] = 15, E[X(3)
1 ] = 20

X
(1)
1 ∼ Exp(1/10), X

(2)
1 ∼ Exp(1/15), X

(3)
1 ∼ Exp(1/20)

Thus, in particular,

λ(1) =
1

10
, λ(2) =

1
15
, λ(3) =

1
20

(a) The probability that the first bus is the 12X is

P

[
min{X(1)

1 ,X
(2)
1 ,X

(3)
1 } = X

(2)
1

]
=

λ(2)

λ(1) +λ(2) +λ(3)
= 0.81
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(b) By Proposition 1, we know min{X(1)
1 ,X

(2)
1 ,X

(3)
1 } ∼ Exp

(
λ(1) +λ(2) +λ(3)

)
.

This has mean
1

λ(1) +λ(2) +λ(3)
= 4.615

Thus we wait, on average, 4.615 minutes.

(c) Our waiting time is independent of line 20 bus arrivals. By memory-
lessness of waiting times, we will always wait

1
λ(1)

= 10 minutes,

on average, regardless of elapsed waiting time.

Example 4. The times when goals are scored in hockey are modeled as a Pois-
son process. For such a process, assume that the average time between goals
is 15 minutes.

(a) In a 60 minute game, find the probability that a fourth goal occurs in
the last 5 minutes of the game

(b) Assume that at least three goals are scored in a game. What is the mean
time of the third goal?

Solution. We know that we have λ = 1
15 . LetNt be the number of goals by time

t, in minutes.

(a) We compute

P[55 < S4 ≤ 60] =
∫ 60

55
fS4

(t)dt (By Proposition 2)

=
1
6

∫ 60

55

( 1
15

)4
t3e−t/15 dt (Since S4 ∼Gamma(n = 4,λ = 1/15))

= 0.068

(b) We get

E[S3 | S3 < 60] =
1

P[S3 < 60]
·
∫ 60

0
t · fS3

(t)dt

=
1

P[S3 < 60]
·
∫ 60

0
t ·

( 1
15 )3t2e−t/15

2
dt

= 33.461 minutes
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1.3 Order Statistics and Arrival Times

Suppose that we know the number of jumps of a Poisson process on the time
interval [0, t], say Nt = n ∈N. How are the arrival times 0 < S1 < S2 < · · · < Sn <
t distributed in [0, t]? To answer this, we need order statistics.

Definition 5 (Order Statistics). Given a set of n ∈N real-valued i.i.d. ran-
dom variables X1, . . . ,Xn, the order statistics X(1),X(2), . . . ,X(n) are defined
by sorting the values of X1, . . . ,Xn in increasing order.

In other words, X(1), . . .X(n) are random variables satisfying

X(1) ≤ X(2) ≤ · · · ≤ X(n)

X(k) is the k-th order statistic, where k ∈ [1,n]. In particular,

X(1) = min{X1, . . . ,Xn}, X(n) = max{X1, . . . ,Xn}

Note however, that X(k) and Xk don’t necessarily have the same distribution.

Proposition 4. Let (Nt)t≥0 be a Poisson process with parameter λ > 0. For
some t > 0 suppose that Nt = n ∈ N and denote by S1,S2, . . . ,Sn the corre-
sponding arrival times. Moreover, let U1, . . . ,Un be n i.i.d. uniform random
variables on [0, t]. Then, conditional on the event {Nt = n} the joint distribu-
tion of (S1, . . . ,Sn) is the joint distribution of the order statistics (U(1), . . . ,U(n) of
U1, . . . ,Un. In other words, conditional on the event {Nt = n} the joint density
function of (S1, . . . ,Sn) is given by

f (s1, . . . , sn) =

 n!
tn , 0 ≤ s1 ≤ s2 ≤ · · · ≤ sn < t
0, otherwise

Corollary 1. Let U1, . . . ,Un be i.i.d. random variables uniformly distributed
on [0, t], and let U(1) ≤ · · · ≤U(n) be the corresponding order statistics. Then

(S1, . . . ,Sn |Nt = n) d= (U(1), . . . ,U(n))

Some important implications of the corollary:

• P[(S1, . . . ,Sn) ∈ A |Nt = n] = P[(U(1), . . . ,U(n) ∈ A] for some set A

• E[g(S1, . . . ,Sn) |Nt = n] = E[g(U(1), . . . ,U(n)] for some function g : Rn→R

Example 5. Starting at time t = 0, patrons arrive at a restaurant according
to a Poisson process with rate 20 customers per hour. If 60 people arrive by
time t = 3, find the probability that the 60-th customer arrives in the interval
[2.9,3].



CHAPTER 1. POISSON PROCESSES 12

Solutiom. We are trying to find P[2.9 < S60 < 3 |N3 = 60]. By the above propo-
sition,

P[2.9 < S60 < 3 |N3 = 60] = P[2.9 < U(60) < 3]

= 1−P[U(60) ≤ 2.9]

= 1−P[U(1) ≤ 2.9, . . . ,U(60) ≤ 2.9]

= 1−P[U1 ≤ 2.9, . . . ,U60 ≤ 2.9]

= 1−P[U1 ≤ 2.9] · · · · ·P[U60 ≤ 2.9]

= 1− (P[U1 ≤ 2.9])60

= 1−
(2.9

3

)60

= 0.869

Example 6. Concertgoers arrive at a show according to a Poisson process with
parameter λ > 0. The band starts playing at time t > 0. The k-th person to
arrive in [0, t] waits t − Sk time units for the start of the concert, where Sk is
the k-th arrival time. Find the expected total waiting time of concertgoers
who arrive before the band starts.

Solution. By the Law of Total Expectation,

E

 Nt∑
k=1

(t − Sk)

 = E

E
 Nt∑
k=1

(t − Sk) |Nt



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The inner part of this is a random variable, and the values of it are given by

E

 Nt∑
k=1

(t − Sk) |Nt = n

 = E

 n∑
k=1

(t − Sk) |Nt = n


= E

 Nt∑
k=1

t |Nt = n

−E
 Nt∑
k=1

Sk |Nt = n


= nt −E

 n∑
k=1

U(k)


= nt −E

 n∑
k=1

Uk


= nt −

n∑
k=1

E[Uk]

= nt −n ·E[U1]

= nt −n · t
2

= n · t
2

Then E

 Nt∑
k=1

(t − Sk) |Nt

 =Nt ·
t
2

, and we plug back in to get

E

E
 Nt∑
k=1

(t − Sk) |Nt


 = E

[
Nt ·

t
2

]
=
t
2
·E[Nt]

=
t
2
·λt

= λ
t2

2

Definition 6 (Poisson Process v3). A Poisson process with parameter λ is
a counting process (Nt)t≥0 with the following properties:

a) N0 = 0

b) The process has stationary and independent increments
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c) P[Nh = 0] = 1−λh+ o(h)

d) P[Nh = 1] = λh+ o(h)

e) P[Nh > 1] = o(h)

What this essentially mean is that in some time interval [0,h], where h is small,
there occurs at most one event.

Simulating a Poisson Process

We want to simulate the trajectory of a Poisson process (Nt)0≤t≤T with param-
eter λ on [0,T ].

(a) Method 1:

(1) We split the interval [0,T ] into n small subintervals of length ∆t =
T /n.

(2) Generate n i.i.d. Poisson random variables ∆N1, ∆N2, . . . , ∆Nn with
parameter λ∆t.

(3) Let N0 = 0. For each i ∈ [0,n− 1], let N(i+1)∆t =Ni∆t +∆Ni+1.

(4) For each i ∈ [0,n− 1] and each t ∈ [i ·∆t, (i + 1) ·∆t)] set Nt =Ni∆t .

(b) Method 2:

(1) Let S0 = 0.

(2) Generate i.i.d exponential random variables X1,X2, . . . with param-
eter λ.

(3) Let Sn = X1 + · · ·+Xn for n = 1,2, . . .

(4) For each k = 0,1, . . . let Nt = k for Sk ≤ t <min{Sk+1,T }.

(c) Method 3:

(1) Simulate the total number of arrivals NT in [0,T ] from a Poisson
distribution with parameter λT .

(2) Generate NT = n i.i.d. random variables U1, . . . ,Un uniformly dis-
tributed on (0,T ).

(3) Sort the variables in increasing order U(1) < U(2) < · · · < U(n) to get
the arrival times S1 =U(1),S2 =U(2), . . . ,Sn =U(n).

(4) For each k ∈ [0,n− 1] set Nt = k for Sk ≤ t < Sk+1, and set Nt = n for
Sn ≤ t < T .
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1.4 Thinning and Superposition

Let’s assume that babies are born at a hospital according to a Poisson process
(Nt)t≥0 with rate parameter λ > 0. Suppose that the babies’ sex is independent
of each other. The worldwide sex ratio at birth is 108 boys to 100 girls. Hence
a simple estimate for the probability that any birth is a boy would be

p =
108

108 + 100
= 0.519

How can the number of male and female births happening at the hospital be
described?

Definition 7 (Thinned Poisson Process). Let (Nt)t≥0 be a Poisson process
with parameter λ > 0. Assume that each arrival, independent of other ar-
rivals, is marked as a type k event with probability pk ∈ (0,1), for k ∈ [1,n],

where p1 + · · · + pn = 1. Let N (k)
t be the number of type k events in [0, t].

Then (N (k)
t )t≥0 is a Poisson process with parameter λpk > 0. Furthermore,

the processes (
N

(1)
t

)
t≥0

,
(
N

(2)
t

)
t≥0

, . . . ,
(
N

(n)
t

)
t≥0

are independent. Each process is called a thinned Poisson process.

A quick observation to be made:

N
(1)
t +N (2)

t + · · ·+N (n)
t =Nt

Then recall that if X ∼ Poisson(λ) and Y ∼ Poisson(µ) are independent, then
X +Y ∼ Poisson(λ+µ).

Proposition 5 (Superposition Process). Assume that(
N

(1)
t

)
t≥0

,
(
N

(2)
t

)
t≥0

, . . . ,
(
N

(n)
t

)
t≥0

are n independent Poisson processes with respective parameters λ1, . . . ,λn > 0.
Let

Nt =N (1)
t +N (2)

t + · · ·+N (n)
t , t ≥ 0

Then (Nt)t≥0 is a Poisson process with parameter λ = λ1 + · · ·+λn.

Going back to the hospital scenario, we assume that the babies’ sex are inde-
pendent of each other. Then p is the probability for a boy, and 1 − p is the
probaiblity for a girl. Then we introduce

Mt = number of male babies by time t
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Ft = number of female babies by time t

ObviouslyNt =Mt+Ft for all t > 0. Then the joint pmf of (Mt ,Ft) form,t ∈N0
will be

P[Mt =m,Ft = f ] = P[Mt =m,Ft = f ,Nt =m+ f ]

= P[Mt =m,Nt =m+ f ]

= P[Mt =m |Nt =m+ f ] ·P[Nt =m+ f ]

The first term is equal to

P[Mt =m |Nt =m+ f ] =
(
m+ f
m

)
pm(1− p)f ,

because (Mt = m | Nt = m + f ) ∼ Binom(m + f ,p) due to the independence of
babies’ sex. Then the second term has Nt ∼ Poisson(λt), and so

P[Mt =m |Nt =m+ f ] ·P[Nt =m+ f ] =
(
m+ f
m

)
pm(1− p)f · e−λt (λt)m+f

(m+ f )!

= e−λpt
(λpt)m

m!
· e−λ(1−p)t (λ(1− p)t)f

f !

ThusMt and Ft are independent andMt ∼ Poisson(λpt) and Ft ∼ Poisson(λ(1−
p)t).

Example 7. Assume that births occur at a hospital at the average rate of 2
births per hour.

(a) On an 8-hour shift, what is the expectation and standard deviation of
the number of female births?

(b) Find the probability that only girls were born between 2 and 5 p.m.

(c) Assume that five babies were born on the ward yesterday. Find the prob-
ability that two are boys.

Solution. We have three Poisson processes:

(Nt)t≥0, a Poisson process with λ = 2

(Ft)t≥0, a Poisson process with λ(F) = λ(1− p) = 2(0.481) = 0.962

(Mt)t≥0, a Poisson process with λ(M) = λp = 2(0.519) = 1.038

We also know that (Ft)t≥0 and (Mt)t≥0 are independent.

(a) We want to compute E[F8] and
√

Var[F8]. Since F8 ∼ Poisson(λ(F) · 8),

E[F8] = λ(F) · 8 = 8(0.962) = 7.696√
Var[F8] =

√
λ(F)8 =

√
7.696 = 2.774
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(b) We want to find P[F3 > 0,M3 = 0]. We can compute this:

P[F3 > 0,M3 = 0] = P[F3 > 0] ·P[M3 = 0]

= (1−P[F3 = 0])P[M3 = 0]

=
(
1− e−λ

(F)3
)
e−λ

(M)3

= (0.944) · (0.044)

= 0.042

(c) We want to find P[M24 = 2 | N24 = 5]. Using the fact that (M24 | N24 =
n) ∼ Binom(n,p),

P[M24 = 2 |N24 = 2] =
(
5
2

)
p2(1− p)3

=
(
5
2

)
(0.519)2(0.481)3

= 0.30

1.5 Compound Poisson Process

Let’s say that the arrival of claims which are reported to an insurance agency
during a specific time interval [0, t] can be modeled by a Poisson process.
However, each of these claims typically come with a different and in advance
not known damage sum. How can we model the total amount of money
needed by an insurance company to cover all claims which are reported by
time t?

Definition 8 (Compound Poisson Process). Let (Nt)t≥0 be a Poisson pro-
cess with parameter λ > 0. Furthermore, let Y1,Y2,Y3, . . . be a sequence
of i.i.d. random variables with density function fY , also independent of
(Nt)t≥0. Then

Ct =
Nt∑
i=1

Yi , t ≥ 0

is called a compound Poisson process with jump-distribution fY and jump-
intensity λ.

What this means is that Ct is a random sum, with (Ct)t≥0 having jumps of
random height given by Y1,Y2, . . . .
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Example 8. Going back to the insurance company problem mentioned above,
an interpretation in terms of a compound Poisson process would be:

• Nt : the number of claims reported by time t

• Yi : the dollar amount of the i-th claim (or the height of the i-th jump)
following a given distribution with density function fY , or

P[Yi ∈ [a,b]] =
∫ b

a
fY (x)dx, i = 1,2, . . .

• Ct : total sum of claims by time t

It is important to see that a compound Poisson process (Ct)t≥0 is again a
stochastic process with stationary and independent increments:

(1) C0 = 0

(2) For all n ∈ N, 0 ≤ t1 < t2 < · · · < tn−1 < tn, the random variables Ct2 −
Ct1 ,Ct3 −Ct2 , . . . ,Ctn −Ctn−1

are independent

(3) For all 0 ≤ s < t the distribution of the random variable Ct − Cs only
depends on t − s

However, in contrast with a Poisson process, Ct −Cs is not Poisson distributed
anymore. Here the distribution depends on the jump distribution fY .

Example 9. Let (Ct)t≥0 be a compound Poisson process. Show that

(a) E[Ct] = E[Nt] ·E[Y1] = λt ·E[Y1].

(b) Var[Ct] = E[Nt] ·E[Y 2
1 ] = λt ·E[Y 2

1 ].

Solution.

Now, given a compound Poisson process (Ct)t≥0 with claims Y1,Y2, . . . , what
if we want to count the number of claims with losses below and above a cer-
tain threshold? This will result again in two independent Poisson processes,
much like a thinned Poisson process.
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Proposition 6. Let (Ct)t≥0 be a compound Poisson process with jump-
intensity λ and jump-distribution fY . Furthermore, let A1,A2, . . . ,An be pair-
wise disjoint subsets of R, and let

N
(k)
t =

Nt∑
i=1

1{Yi∈Ak }, t ≥ 0

for all k ∈ [0,n]. Then (
N

(1)
t

)
t≥0

,
(
N

(2)
t

)
t≥0

, . . . ,
(
N

(n)
t

)
t≥0

are independent Poisson processes with rate λ ·P[Y1 ∈ Ak], respectively.

Example 10. If we again consider the insurance company example, and our
threshold is $1000, then we can interpret the problem as follows:

• A1 = [0,1000), A2 = [1000,∞)

• N
(1)
t : the number of claims reported by time t with damage sum below

1000. The arrival rate is

λ ·P[Y1 < 1000] = λ ·
∫ 1000

0
fY (x)dx

• N
(2)
t : the number of claims reported by time t with damage sum above

1000. The arrival rate is

λ ·P[Y1 ≥ 1000] = λ ·
∫ ∞

1000
fY (x)dx

1.6 Nonhomogeneous Poisson Process

The assumption that arrivals occur at a constant arrival rate λ, which is in-
dependent of time, is a very unrealistic assumption. To remedy this, we can
make λ depend on t, to get a intensity function, λ(t), for t ≥ 0.

Definition 9 (Nonhomogeneous Poisson Process). A counting process
(Nt)t≥0 is a nonhomogeneous Poisson process with intensity function λ(t),
if

(1) N0 = 0

(2) For all n ∈ N, 0 ≤ t1 < t2 < · · · < tn−1 < tn, the random variables
Nt2 −Nt1 ,Nt3 −Nt2 , . . . ,Ntn −Ntn−1

are independent
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(3) For all 0 ≤ s < t the distribution of the random variable Nt −Ns is
Poisson distributed with parameter

∫ t
s
λ(u)du

Now the distribution of increments is no longer stationary. However, if λ(t) =
λ is constant, then we just have a normal Poisson process again.

Example 11. Students arrive at the UCen for lunch according to a nonhomo-
geneous Poisson process. The doors open at 11 a.m. The arrival rate increases
linearly from 100 to 200 students per hour between 11 a.m. and noon. The
rate stays constant for the next 2 hours, and then decreases linearly down to
100 from 2 to 3 p.m. Find the probability that there are at least 400 people in
the cafeteria between 11:30 a.m. and 1:30 p.m.

Solution. We have that our intensity function is given by

λ(t) =


100 + 100t, 0 ≤ t ≤ 1

200, 1 ≤ t ≤ 3

500− 100t, 3 ≤ t ≤ 4

We want to compute P[N2.5 − N0.5 ≥ 400]. Here N2.5 − N0.5 is Poisson dis-
tributed with parameter∫ 2.5

0.5
λ(t)dt =

∫ 1

0.5
(100 + 100t)dt +

∫ 2.5

1
200dt = 387.5

Then

P[N2.5 −N0.5 ≥ 400] = 1−P[N2.5 −N0.5 ≤ 399]

= 1−
399∑
k=0

P[N2.5 −N0.5 = k]

= 1−
399∑
k=0

e−387.5 · (387.5)k

k!

= 0.269

1.7 Spatial Poisson Process

What if we want to model the random distribution of points in two or higher
dimensional spaces? Some examples of this are the location of trees in a forest,
galaxies in the night sky, or cancer clusters across the US, etc. We first define
our notation:
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• d ≥ 1 and A ⊂R
d

• The random variable NA is the number of points in the set A

• |A| = size of A (length in R
1, area in R

2, volume in R
3)

Definition 10 (Spatial Poisson Process). A collection of random variables
(NA)A⊂Rd is a spatial Poisson process in dimension d with parameter λ > 0
if

(1) Whenever A and B are disjoint sets, NA and NB are independent
random variables

(2) For each bounded set A ⊂ R
d , NA has a Poisson distribution with

parameter λ|A|.

This generalizes the regular one-dimensional Poisson process whereNt =N[0,t] ∼
Poisson(λ · |[0, t]|). It is a fact that given a bounded set A ⊂ R

d , conditional on
NA = n, meaning there are n points in NA, the locations of the points are
uniformly distributed in A. Hence a spatial Poisson process is a model of
complete spatial randomness.

1.8 Renewal Process

Recall that a Poisson process has independent and identically distributed in-
terarrival times following an exponential distribution with parameter λ > 0. A
renewal process is a counting process where interarrival times follow a more
general distribution. Hence a renewal process is a generalization of the Pois-
son process.

Definition 11 (Renewal Process). Let L1,L2, . . . be a sequence of positive,
independent and identically distributed random variables. We refer to Li
as the i-th holding time. Define for all n ≥ 1,

Jn =
n∑
i=1

Li

Each Jn is referred to as the n-th jump time and [Jn, Jn+1] is called renewal
interval. Define

Xt =
∞∑
n=1

1{Jn≤t}, t ≥ 0
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Then Xt represents the number of jumps that have occurred by time t >
0, and the continuous-time stochastic process (Xt)t≥0 is called a renewal
process.

We can see that a Poisson process is a renewal process where L1,L2, . . . are
i.i.d. Exp(λ)-distributed. A renewal process, for example, can also be used to
model the number of breakdowns of worn-out machinery:

• L1,L2 . . . : lifetime of machinery/device

• Jn: breakdown time of n-th device

• Xt : number of replaced devices by time t > 0

Further Generalizations of Poisson Process

Poisson processes and compound Poisson processes are building blocks for
more general classes of processes:

• Lévy processes: Continuous-time stochastic processes with stationary and
independent increments.

• Mixed Poisson processes: The rate parameter Λ is itself a random variable
(Cox process, doubly stochastic process).

(Nt |Λ = λ) ∼ Poisson(λt)

• Even more general has the model intensity function λ(t) itself as a con-
tinuous time stochastic process.

• Hawkes process: The intensity function λ(t) depends on (Ns)0≤s≤t itself
(self-exciting process).



2Continuous-Time Markov Chains

We want to extend the discrete-time Markov chain model that we developed
in 160A. A continuous-time process allows us to model not only the transi-
tions between states, but also the duration of time in each state. The state
space S remains discrete, and the Markov property still continues to hold,
but time evolves continuously.

2.1 Introduction

Let’s say that we have a three-state weather chain Markov model with state
space S = {rain, snow, clear}. Changes in weather states are described by the
transition matrix

P =


0 1/2 1/2

3/4 0 1/4
1/4 3/4 0


Then the continuous-time extension would be: Duration of time for each
weather state is exponentially distributed with parameters λr , λs, and λc:

• Rainfall lasts, on average, 3 hours at a time (λr = 1/3)

• Snow lasts, on average, 6 hours at a time (λs = 1/6)

• Weather stays clear, on average, 12 hours at a time (λc = 1/12)

We denote by Xt the weather at time t ≥ 0. Then (Xt)t≥0 is a continuous-time
Markov chain. The matrix P , the exponential time parameters (λr ,λs,λc), and
initial distribution completely specify the process.

Definition 12 (Markov Property). A continuous-time stochastic process
(Xt)t≥0 with discrete state space S is a continuous-time Markov chain if

P[Xt+s = j | Xs = i,Xu = xu for some 0 ≤ u ≤ s] = P[Xt+s = j | Xs = i]

for all s, t ≥ 0, i, j,xu ∈ S , and 0 ≤ u ≤ s. The process is said to be time-
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homogeneous if this probability does not depend on s. That is,

P[Xt+s = j | Xs = i] = P[Xt = j | X0 = i]

Note: In this class, we only consider the time-homogeneous case.

Definition 13 (Transition Function). For each t ≥ 0 the transition prob-
abilities of a (homogeneous) continuous-time Markov chain can be ar-
ranged in a matrix function

Pij (t) = P[Xt = j | X0 = i], t ≥ 0

We call the matrix P (t) = (Pij (t))i,j∈S the transition function.

Keep in mind that for each t ≥ 0, we have a matrix P (t). Hence the given P in
the weather example is not the transition function. We also have that P (0) = I ,
the identity matrix.

Example 12. A Poisson process (Nt)t≥0 with parameter λ is a continuous-
time Markov chain with countably infinite state space S = N0. The Markov
property holds as a consequence of stationary and independent increments.
Compute the transition function P (t) for all t ≥ 0.

Solution. The transition probability function can be calculated to be, for 0 ≤
i ≤ j,

Pij (t) = P[Nt+j = j |Nj = i]

=
P[Ns = i,Nt+j = j]

P[Ns = i]

=
P[Ns = i,Nt+j −Ns = j − i]

P[Ns = i]

=
P[Ns = i]P[Nt+s −Ns = j − i]

P[Ns = i]

= P[Nt −N0 = j − 1]

= e−λt
(λt)j−i

(j − i)!
Hence for all t ≥ 0,

P (t) =


e−λt e−λt (λt)

1! e−λt (λt)2

2! · · ·
0 e−λt e−λt (λt)

1! · · ·
0 0 e−λt · · ·
...

...
...

. . .


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Proposition 7 (Chapman-Kolmogorov Equations). For a continuous-time
Markov chain (Xt)t≥0 with transition function P (t), it holds that

P (s+ t) = P (s) · P (t)

for all s, t ≥ 0. That is,

Pij (s+ t) = [P (s)P (t)]ij =
∑
k∈S

Pik(s) · Pkj (t)

for all states i, j ∈ S and s, t ≥ 0.

Proof. We have that

Pij (s+ t) = P[Xs+t = j | X0 = i]

=
∑
k

P[Xs+t = j | X0 = i,Xj = k] ·P[Xs = k | X0 = i]

= P[Xs+t = j | Xj = k] · Pik(s)

= P[Xt = j | X0 = k] · Pik(s)

=
∑
k

Pik(s)Pkj (t)

= (P (s)P (t))ij

Then the special case gives us that P (s+ t) = P (s)P (t), as desired.

2.2 Holding Times

Let (Xt)t≥0 be a continuous-time Markov chain with finite or countably infi-
nite state space S .

Definition 14 (Holding Time). We denote by Ti the holding time at state i,
that is, the length of time a continuous-time Markov chain stays in state
i before transitioning to a new state.

As a consequence of time-homogeneity and the Markov property,

Proposition 8. The holding times Ti for any state i are independent and ex-
ponentially distributed with holding time parameter qi ∈ [0,∞).
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Consequently, expected duration of time the continuous-time Markov chain
spends in state i is given by

E[Ti] =
1
qi

Definition 15 (Absorbing State). A state i ∈ S is called an absorbing state
if qi = 0. A Markov chain with at least one absorbing state is called an
absorbing Markov chain.

When an absorbing state is visited the process never leaves that state.

Definition 16 (Embedded Chain). Let (Xt)t≥0 be a continuous-time Markov
chain and let P̃ = (pij )i,j∈S describe the discrete transition probabilities
from state i to state j. If we ignore time, and just watch state to state
transitions, we see a sequence Y0,Y1, . . . where Yn is the n-th state visited
by the continuous process (Xt)t≥0. The sequence Y0,Y1, . . . is a discrete-
time Markov chain called the embedded chain with transition probability
matrix P̃ .

P̃ is a stochastic matrix whose diagonal entries are 0. Hence we can piece
together the evolution of a continuous-time Markov chain:

(1) Starting from i, the process stays in i for an exponentially distributed
length of time (on average 1/qi time units)

(2) Then it jumps to a new state j , i with probability pij

(3) Then process stays in j for an exponentially distributed length of time
(on average 1/qj time units)

(4) Then it jumps to a new state k , j with probability pjk

(5) And so on...

Example 13. For a Poisson process with parameter λ specify the holding time
parameters and the transition matrix of the embedded chain.

Solution. The holding time paraemters are

qi = λ, for all states i ∈N0
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Then the transition matrix of the embedded chain will be

P̃ =



0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .



2.3 Transition Rates

We can also describe a continuous-time Markov chain by specifying transition
rates between pairs of states. Consider for each state i the pairs (i, j) for all
states j , i which can be visited after i. Each pair (i, j) is associated with an
exponential alarm clock Tij with parameter qij , so Tij ∼ Exp(qij ). All alarm
clocks are independent and ring after an exponentially distributed length of
time.

When our Markov chain hits state i, all clocks Tij are started simultane-
ously and the first alarm that rings determines the next state to visit. If Tij
clock rings first, then Ti = Tij and the process moves from state i to state j.
Hitting state j will trigger a new set of exponential alarm clocks with rates
qj1,qj2, . . . . The first alarm that rings determines the time spent in j and the
next state to hit after state j.

Definition 17 (Transition Rates). The qij are called the transition rates or
instantaneous rates of the continuous-time Markov chain.

As a convention, if qij = 0, then state j cannot be hit from state i. By Proposi-
tion 2, we get that

• Holding time parameters:

qi =
ni∑
k=1

qik

• Transition probabilities of the embedded chain P̃ = (pij )i,j∈S :

pij =
qij∑ni
k=1 qik

=
qij
qi

• In particular, qij = qi · pij .
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Definition 18 (Generator Matrix). The matrix Q with entries

Qij =

qij , i , j

−qi , i = j
(i, j ∈ S)

with transition rates qij and holding rates qi =
∑
j,i qij is called the gener-

ator matrix.

This is the most important matrix for continuous-time Markov chains. How-
ever, Q is not a stochastic matrix; the qij are not probabilities.

Example 14. It is time for students to register for classes, and a line is forming
at the registrar’s office for those who need assistance. It takes the registrar an
exponentially distributed amount of time to service each student, at the rate
of one student every 5 minutes. Students arrive at the office and get in line
according to a Poisson process at the rate of one student every 4 minutes. Line
size is capped at 4 people. If an arriving student finds that there are already 4
people in line, then they try again later. As soon as there is at least one person
in line, the registrar starts assisting the first available student. The arrival
times of the students are independent of the registrar’s service time.

(a) Provide the transition rate graph with the transition rates.

(b) Compute the holding time parameters.

(c) Provide the generator matrix.

(d) Provide the transition probability matrix P̃ for the embedded chain.

Solution. (a) Let (Xt)t≥0 be our continuous time Markov chain with state
space S = {1,2,3,4}, and Xt be the number of students in line at time t.
The students’ arrival is modeled with a Poisson process with λ = 1

4 , and
the registrar has service rate µ = 1

5 . Our transition rate graph will be

(b) The holding time parameters:

Ti = duration of time spent in state i ∈ [0,4], Ti ∼ Exp(qi)
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Since
qi =

∑
k

qik ,

this gives us

q0 = q01 =
1
4
, q1 = q12 +q10 =

1
4

+
1
5

=
9

20
, q2 = q3 =

9
20
, q4 = q43 =

1
5

(c) The generator matrix is

Q =


−1

4
1
4 0 0 0

1
5 − 9

20
1
4 0 0

0 1
5 − 9

20
1
4 0

0 0 1
5 − 9

20
1
4

0 0 0 1
5 −1

5


(d) The transition probability matrix P̃ for the embedded chain will be given

by

pij =
qij
qi
, i, j ∈ S

Hence

P̃ =


0 1 0 0 0
4
9 0 5

9 0 0
0 4

9 0 5
9 0

0 0 4
9 0 5

9 0
0 0 0 1 0



2.4 Infinitesimal Generator

Given a generator matrixQ of a continuous-time Markov chain, how do we get
the transition function P (t)? We examine the infinitesimal behavior of Pij (t)
as t ↓ 0.

• Case 1: i , j

lim
t↓0

P[Xt = j | X0 = i]
t

= lim
t↓0

Pij (t)− Pij (0)

t
= P ′ij (0) = qij ,

where Pij (0) = 0.

• Case 2: i = j

P ′ii(0) = lim
t↓0

Pii(t)− Pii(0)
t

= lim
t↓0

−
∑
j,i Pij (t)

t
= −

∑
j,i

qij = −qi ,

where Pii(0) = 1.
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Proposition 9. The generator matrix Q satisfies the property

Q = P ′(0)

where P (t) is the transition function.

As said before,Q is not a stochastic matrix; qij are not probabilities. However,
in terms of infinitesimals, for i , j,

P[Xt+∆t = j | Xt = i] ≈ qij ·∆t, ∆t very small

Hence qij is an instantaneous rate from i to j.
For discrete-time Markov chains, there is no generator matrix, because all

probabilistic properties are captured by the transition probability matrix. For
continuous-time Markov chains, Q gives a complete description of the dy-
namics of the process. As shown before, we can derive Q from P (t) via the
proposition, but in a modeling context we are usually given Q and we want
to find P (t). We can do this by solving a coupled system of linear ordinary
differential equations.

Proposition 10 (Chapman-Kolgomorov Forward/Backward Equations). A
continuous-time Markov chain with transition function P (t) and infinitesimal
generator Q satisfies the forward equation

P ′(t) = P (t) ·Q

and the backward equation
P ′(t) =Q · P (t)

with P (0) = I , the identity matrix. Equivalently, for all states i and j,

P ′ij (t) =
∑
k

Pik(t)qkj = −Pij (t)qj +
∑
k,j

Pik(t)qkj

and
P ′ij (t) =

∑
k

qikPkj (t) = −qiPij (t) +
∑
k,i

qikPkj (t).

Proof.

Example 15. Consider a general two-state continuous-time Markov chain with
state space S = {1,2} and transition rates q12 = λ and q21 = µ. Show that the
transition function P (t) is given by

P (t) =
1

λ+µ

(
µ+λe−(λ+µ)t λ−λe−(λ+µ)t

µ−µe−(λ+µ)t λ+µe−(λ+µ)t

)
(t ≥ 0)
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Solution. The generator matrix will be

Q =
(
−q1 q12
q21 −q2

)
=

(
−λ λ
µ −µ

)
Then

P (t) =
(
P11(t) P12(t)
P21(t) P22(t)

)
=

(
P11(t) 1− P11(t)

1− P22(t) P22(t)

)
By the forward equation, P ′(t) = P (t)Q, so(

P ′11(t) P ′12(t)
P ′21(t) P ′22(t)

)
=

(
P11(t) P12(t)
P21(t) P22(t)

)(
−λ λ
µ −µ

)
Then we get a system of equations:P ′11(t) = −λP11(t) +µ(1− P11(t))

P ′22(t) = −µP22(t) +λ(1− P22(t))

However, since we know that the solution to the linear ODE f ′(x) = af (x) + b,
f (0) = c, with constants a,b,c ∈R will be given by

f (x) =
(
c+

b
a

)
· eax − b

a

Thus

P11(t) =
µ

λ+µ
+
(
1−

µ

λ+µ

)
e−(λ+µ)t

P22(t) =
λ

λ+µ
+
(
µ

λ+µ

)
e−(λ+µ)t

One can then easily solve for P12 and P21.

The backward equation P ′(t) = Q · P (t) is a matrix-valued linear ODE. For
scalars, the solution to

f ′(t) = q · f (t), f (0) = 1

is just given by f (t) = eqt . For matrices, it is a different case.

Definition 19 (Matrix Exponential). Let A be a k × k quadratic matrix.
The matrix exponential eA is a k × k matrix defined as

eA =
∞∑
n=0

1
n!
An = I +A+

1
2
A2 +

1
6
A3 + · · ·
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Some properties for square matrices A,B ∈Rn×n:

(1) The matrix eA is well defined because the series converges.

(2) e0 = I with zero matrix 0 ∈Rk×k .

(3) eAe−A = I .

(4) e(s+t)A = esAetA for s, t ∈R.

(5) If AB = BA, then eA+B = eA · eB = eB · eA.

(6) d
dt e

tA = AetA = etA ·A.

(7) If D ∈Rn×n is diagonal with diagonal entries (λ1,λ2, . . . ,λn), then

eD =


eλ1 0 · · · 0
0 eλ2 · · · 0
...

...
. . .

...
0 0 · · · eλn


Proposition 11. For a continuous-time Markov chain with transition function
P (t) and infinitesimal generator Q, it holds that

P (t) = etQ =
∞∑
n=0

1
n!

(tQ)n = I + tQ+
t2

2
Q2 +

t3

6
Q3 + · · ·

In particular, etQ is the unique solution to the forward/backward equations.

Computing the matrix exponential is often challenging; we have to use nu-
merical approximation methods. In general, there does not exist a closed-
form for the transition function P (t), unless Q is diagonalizable. Recall from
linear algebra:

• A square matrix A ∈ R
n×n is diagonalizable if there exists an invertible

matrix S ∈Rn×n and a diagonal matrix D ∈Rn×n such that

A = SDS−1

• If A ∈ Rn×n is diagonalizable, then the entries of D are the eigenvalues
of A and the columns of S are corresponding eigenvectors.

• If A ∈Rn×n has n distinct eigenvalues, then A is diagonalizable.

Using this fact,
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Proposition 12. If the generator matrix Q is diagonalizable with Q = SDS−1,
then the transition function is given by

P (t) = etQ = SetDS−1.

Proof. Assume Q = SDS−1. Then

P (t) = etQ

=
∞∑
n=0

1
n!

(tQ)n

=
∞∑
n=0

1
n!

(tSDS−1)n

=
∞∑
n=0

1
n!
tn(SDnS−1)

= S

 ∞∑
n=0

1
n!

(tD)n
S−1

= SetDS−1

Example 16. For the two-state Markov chain with state space S = {1,2} and
generator matrix

Q =
(
−1 1
2 −2

)
compute the transition function P (t) via diagonalization of Q.

Solution. First we compute the eigenvalues:

det(Q −λI) = det
(
−1−λ 1

2 −2−λ

)
= λ(λ+ 3)

=⇒ λ1 = 0, λ2 = −3

Then we find the eigenvectors:

• λ1 = 0:

v1 =
(
1
1

)
We will always have λ1 = 0 with corresponding eigenvector

(1
1
)

because
the rows sum to zero.
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• λ2 = −3: We solve

Qv2 = −3v2⇐⇒ (Q+ 3I)v2 = 0⇐⇒
(
2 1
2 1

)
v2 =

(
0
0

)

=⇒ v2 =
(

1
−2

)
Now we calculate the required matrices for the matrix exponential. We know
that

D =
(
0 0
0 −3

)
, S =

(
1 1
1 −2

)
Using Gaussian elimination, we calculate S−1 to be

S−1 =
(2

3
1
3

1
3 −1

3

)
Finally,

P (t) =
(
1 1
1 −2

)(
e0t 0
0 e−3t

)(2
3

1
3

1
3 −1

3

)
=

1
3

(
1 e−3t

1 −2e−3t

)(
2 1
1 −1

)

=
1
3

(
2 + e−3t 1− e−3t

2− 2e−3t 1 + 2e−3t

)

2.5 Long-Term Behavior

Definition 20 (Limiting Distribution). A probability distribution π is the
limiting distribution of a continuous-time Markov chain if for all states i
and j,

lim
t→∞

Pij (t) = πj .

πj is the long-term proportion of time the chain spends in state j. In others
words,

P[Xt = j] ≈ πj , t large
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Definition 21 (Stationary Distribution). A probability distribution π is a
stationary distribution if

πT · P (t) = πT , ∀t ≥ 0

That is, for all states j,

πj =
∑
i∈S

πi · Pij (t), ∀t ≥ 0

The limiting distribution, if it exists, is a stationary distribution, but not vice
versa.

Definition 22 (Irreducibility). A continuous-time Markov chain is irre-
ducible if for all states i and j it holds that Pij (t) > 0 for some t > 0.

Proposition 13. A finite-state continuous-time Markov chain is irreducible if
all the holding time parameters are strictly positive, i.e., qi > 0 for all i ∈ S .

Unlike the discrete case, periodicity is not an issue in continuous-time.

Theorem 1 (Fundamental Limit Theorem). Let (Xt)t≥0 be a finite, irreducible,
continuous-time Markov chain with transition function P (t). Then there ex-
ists a unique stationary distribution π, which is the limiting distribution. That
is, for all j,

lim
t→∞

Pij (t) = πj , for all initial i

Equivalently,
lim
t→∞

P (t) = Π,

where Π is a matrix all of whose rows are equal to π.

Example 17. Consider the general two-state continuous-time Markov chain
with state space S = {1,2}, and transition rates q12 = λ and q21 = µ. We know
that the transition function is

P (t) =
1

λ+µ

(
µ+λe−(λ+µ)t λ−λe−(λ+µ)t

µ−µe−(λ+µ)t λ+µe−(λ+µ)t

)
(t ≥ 0)

Solution. We have

lim
t→∞

P (t) = lim
t→∞

1
λ+µ

(
µ+λe−(λ+µ)t λ−λe−(λ+µ)t

µ−µe−(λ+µ)t λ+µe−(λ+µ)t

)
=

1
µ+λ

(
µ λ
µ λ

)
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Hence the limiting distribution is

πT =
( µ
µ+λ

λ
µ+λ

)
Note thatπ is also the unique stationary distribution of this irreducible Markov
chain with finite state space.

Proposition 14. A probability distribution π is a stationary distribution of a
continuous-time Markov chain with generator Q if and only if

πT ·Q = 0.

That is, ∑
i∈S

πi ·Qij = 0, ∀j ∈ S

Proof. (=⇒) : Let π be a stationary distribution. Then

πT P (t) = πT , ∀t ≥ 0

We differentiate with respect to t to get

πT P ′(t) = 0, ∀t ≥ 0

Then we plug in t = 0 to get

0 = πT P ′(0) = πTQ

(⇐=) : Let π satisfy πTQ = 0. Then we multiply P (t) on the right for both
sides, and then by Kolgomorov’s Backward Equation,

0 = πTQP (t) = πT P ′(t) =⇒ πT P (t) = constant, ∀t ≥ 0

In particular, since πT P (0) = πT , it must hold that πT P (t) = πT . Hence π is a
stationary distribution.

If we rearrange the latter equation, we get what is called the Global Balance
Equation: ∑

i,j

πiqij = πjqj ∀j.

Example 18. During this remote quarter Tom’s life as a college student can
be described by a continuous-time Markov chain. He is always in one of three
states: eat, study, and sleep. He eats on average for 1 hour at a time; studies
on average for 5 hours; and sleeps on average for 8 hours. After eating, there
is a 50-50 chance he will fall asleep or study. After studying, there is a 50-
50 chance he will eat or sleep. And after sleeping, Tom always eats. What
proportion of the day does Tom sleep in the long-run?
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Solution. Let (Xt)t≥0 be our continuous-time Markov chain with state space
S = {eat (1), study (2), sleep (3)}. Let Xt be Tom’s state at time t. We have

P̃ =


0 1

2
1
2

1
2 0 1

2
1 0 0


The holding time parameters are, in hours,

q1 = 1, q2 =
1
5
, q3 =

1
8

Then we can solve for qij by taking

qij = pijqi .

Hence

Q =


−1 1

2
1
2

1
10 −1

5
1

10
1
8 0 −1

8


Let πT =

(
π1 π2 π3

)
. We solve πTQ = 0 and π1 +π2 +π3 = 1 with a system

of equations: 
−π1 + 1

10π2 + 1
8π3 = 0

1
2π1 − 1

5π2 = 0
1
2π1 + 1

10π2 − 1
8π3 = 0

π1 +π2 +π3 = 1

Solving this, we get
πT =

(
2

19
5

19
12
19

)
Since the chain is irreducible and the state space is finite, the stationary dis-
tribution is also the unique limiting distribution, and we can see that Tom
spends around π3 = 12

19 ≈ 0.63 of his day sleeping.

Consider the embedded discrete-time Markov chain for P̃ in our continuous-
time Markov chain, denoted Y0,Y1, . . . . Recall that a probability distribution
φ is a stationary distribution of the embedded chain if and only if

φT · P̃ = φT .

In other words,
φj =

∑
i∈S

φi · P̃ij , ∀j ∈ S

The stationary distribution π of the continuous-time Markov chain is not
equal to the stationary distribution of φ of the embedded chain!
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Proposition 15. (1) Let π be given. Then

φj =
πjqj∑
kπkqk

, ∀j

is the stationary distribution of the embedded chain.

(2) Let φ be given. Then

πj =
φj /qj∑
kφk/qk

, ∀j

is the stationary distribution of the continuous-time Markov chain.

In other words, φj is the long-term proportion of transitions the chain makes
into state j.

Example 19. Consider the Markov chain of Tom’s life from before. Compute
the stationary distribution φ of the embedded chain from the transition ma-
trix P̃ .

Solution. To compute the stationary distribution, we solve φT P̃ = φT and φ1 +
φ2 +φ3 = 1, where

P̃ =


0 1

2
1
2

1
2 0 1

2
1 0 0


Then we get the linear system

−φ1 + 1
2φ2 +φ3 = 0

1
2φ1 −φ2 = 0
1
2φ1 + 1

2φ2 −φ3 = 0

φ1 +φ2 +φ3 = 1

Solving this, we get

φT =
(

4
9

2
9

3
9

)
We can show that Proposition 15 is satisfied:

π1 =
4/9 · 1

4
9 · 1 + 2

9 · 5 + 3
9 · 8

=
2

19

π2 =
2/9 · 5

4
9 · 1 + 2

9 · 5 + 3
9 · 8

=
5

19

π3 =
3/9 · 8

4
9 · 1 + 2

9 · 5 + 3
9 · 8

=
12
19
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2.6 Absorbing States

Let (Xt)t≥0 be an absorbing Markov chain on {1, . . . , k}with one absorbing state
a. Similar to the discrete case, all non-absorbing states are transient. Let T
denote the set of transient states. We write the generator matrix in canonical
block matrix form:

Q =
(
0 0
? V

)
,

where V is a (k−1)×(k−1) matrix. For transient state i, what can we say about
the expected time until absorption?

Proposition 16 (Mean Time Until Absorption). For an absorbing continuous-
time Markov chain, define a square matrix F on the set T of transient states,
where Fij is the expected time, for the chain started in i ∈ T , that the process
spends in j until absorption. Then,

F = −V −1.

For the chain started in i ∈ T , the mean time until absorption is,

ai =
∑
j∈T

Fij

The matrix F is called the fundamental matrix.

As an example, multi-state Markov models are used in medicine to model the
course of diseases. A patient may advance into, or recover from, successively
more severe stages of a disease until some terminal state. Each stage repre-
sents a state of an absorbing continuous-time Markov chain.

Example 20. Bartolomelo et al. (2011) developed such a model to study the
progression of liver disease among patients diagnosed with cirrhosis of the
liver. The general form of the infinitesimal generator matrix for their three-
parameter model is

Q =


−(q12 + q13) q12 q13

0 −q23 q23
0 0 0

 ,
where state 1 represents cirrhosis, state 2 denotes liver cancer, and state 3 is
death. Compute the mean absorption times for states 1 and 2.

Solution. We can rewrite our generator matrix to be

Q =


0 0 0
q13 −(q13 + q12) q12
q23 0 −q23


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Then V will be the bottom left quadrant:

V =
(
−(q13 + q12) q12

0 −q23

)
Then the fundamental matrix is

F = −V −1 =
1

q23(q13 + q12)

(
q23 q12
0 q13 + q12

)
Then the mean absorption rates will be

a1 =
1

q13 + q12
+

q12

q23(q13 + q12)
, a2 =

1
q23

Then if q12 = 0.0151, q13 = 0.0071, q23 = 0.0284, where t is in months, then

a1 = 69, a2 = 35.21

Definition 23 (Detailed Balance Condition). Let (Xt)t≥0 be a continuous-
time Markov chain with generator Q. A probability distribution λ satis-
fies the detailed balance condition (or local balance condition) if

λiqij = λjqij , ∀i, j

As a consequence,

Proposition 17. If a probability distribution λ satisfies the detailed balance
condition, then λ is a stationary distribution.

Proof. Suppose λ satisfies the detailed balance condition. We want to show
λTQ = 0, or ∑

i

λiqij = 0

Indeed, ∑
i

λiqij =
∑
i

λjqji = λj
∑
i

qji = 0

Definition 24 (Birth-and-Death Process). A birth-and-death process is a
continuous-time Markov chain with state space S = {0,1,2, . . . } where
transitions only occur to neighboring states, i.e. "births" occur from i
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to i + 1 at the rate λi and "deaths" occur from i to i − 1 at the rate µi .

This transition graph illustrates a birth-and-death process:

Notice that the state space S does not need to be finite.

Proposition 18. For a birth-and-death process with birth rates λi and death
rates µi for i = 0,1,2, . . . , assume that

∞∑
k=0

k∏
i=1

λi−1

µi
<∞.

Then the unique stationary distribution π is given by

πk = π0

k∏
i=1

λi−1

µi
, ∀k = 0,1,2, . . . ,

where

π0 =

 ∞∑
k=0

k∏
i=1

λi−1

µi


−1

Proof. By the detailed balance condition,

πiqij = πjqji , ∀i, j

Here,
πiqi,i+1 = πi+1qi+1,i i = 0,1, . . .

and qi,i+1 = λi , and qi+1,i = µi+1. Then

π1 = π0
λ0

µ1
, π2 = π1

λ1

µ2
= π0

λ0

µ1

λ1

µ2

=⇒ πk = π0

k∏
i=1

λi=1

µi
, k = 0,1, . . .

Moreover,

1 =
∞∑
k=0

πk =
∞∑
k=0

π0

k∑
i=1

λk−1

µk

 = π0

∞∑
k=0

 k∏
i=1

λi−1

µi


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=⇒
∞∑
k=0

 k∏
i=1

λi−1

µi

 <∞, π0 =

 ∞∑
k=0

 k∏
i=1

λi−1

µi



−1

It is a fact that if the stationary distribution in the above proposition exists,
then it is also the limiting distribution of the birth-and-death process.

Example 21. Consider a continuous-time version of the simple random walk
on {0,1,2, . . . }with reflecting boundary at 0. From 0, the walk moves to 1 after
an exponentially distributed length of time with rate λ. From i > 0, transitions
to the left occur at rate µ, and transitions to the right occur at rate λ. Find the
stationary distribution.

Solution. The simple random walk is a birth-and-death process with λi = λ
and µi = µ. By Proposition 18,

πk = π0

k∏
i=1

λ
µ

= π0

(
λ
µ

)k
k = 0,1,2

and

π0 =

 ∞∑
k=0

(
λ
µ

)k−1

=
(

1
1−λ/µ

)−1

= 1− λ
µ
, if

λ
µ
< 1

This comes from the geometric series expansion:

∞∑
k=0

(
λ
µ

)k
=

 1
1−λ/µ ,

λ
µ < 1

∞, otherwise

In conclusion,

• λ < µ:

πk =
(
1− λ

µ

)(
λ
µ

)k
, k = 0,1, . . .

will be the stationary distribution (and also the limiting distribution).

• λ ≥ µ: The stationary distribution does not exist.
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2.7 Queueing Theory

Queueing theory is the study of waiting lines or queues. For example, cus-
tomers arrive at a facility for a service. If the service is not immediately avail-
able, they wait for service, and leave the system when the service is complete.
The general queueing model is quite broad, with notation:

A/B/n = arrival time distribution/service time distribution/# of servers

In the context of Markov chains, we focus on birth-and-death processes, where
(Xt)t≥0 is a Markov chain, and Xt is the number of customers in the system at
time t. This means we deal with an M/M/c queue, where M stands for either
Markov or memoryless, which means the arrival and service times are both
exponentially distributed.

Proposition 19 (Little’s Formula). In a queueing system, let L denote the long-
term average number of customers in the system, λ the rate of arrivals, and
W the long-term average time that a customer is in the system. Then,

L = λW .

Example 22. Cars arrive at a drive-through carwash (with one spot) according
to a Poisson process at the rate of nine customers per hour. The time to wash
a car has exponential distribution with mean 5 minutes.

(a) How many cars, on average, are at the carwash in the long-run?

(b) How long, on average, is a customer at the carwash in the long-run?

(c) How long, on average, does a customer wait to be served?

(d) What is the expected number of cars waiting to be served?

Solution. Let Xt be the number of cars in the carwash at time t. This is a
M/M/1 queueing system, a birth-and-death process. The arrival rate is λ = 9
and the service rate is µ = 12. The limiting distribution is

πk =
(
1− λ

µ

)(
λ
µ

)k
=

(
1− 9

12

)( 9
12

)k
=

1
4
·
(3

4

)k
(a) Since πk ∼Geo(p = 1/4), the expected value is

1− p
p

=
3/4
1/4

= 3

Hence, L = 3.
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(b) By Little’s Formula,

W =
L
λ

=
3
9

= 20 minutes

(c) We have W = Wq +Ws, where Wq is the long-term average waiting time
and Ws is the long-term average service time. Here,

Ws =
1
µ

=
1

12

Hence
Wq =W −Ws =

1
3
− 1

12
=

1
4

So a customer will wait on average 15 minutes before being served.

(d) Consider a process restricted to the queue as its own queueing system.
Then Lq = λWq, and so

Lq = 9 · 1
4

=
9
4

Hence on average, there are 2.25 cars in the queue waiting to be served.

Definition 25 (M/M/c Queue). A M/M/c queue has exponentially dis-
tributed arrival and service times, with c independent servers. Death-
rate depends on number of customers i in the system:

• 0 < i ≤ c: all customers are being served with rate µi = i ·µ

• i > c only c customers are being served with rate µi = c ·µ

µi =

i ·µ, i = 1, . . . , c − 1

c ·µ i = c,c+ 1, . . .

for i = 1,2, . . .

Proposition 20. For 0 < λ < cµ the stationary distribution π of the M/M/c
queue exists and is given by

πk =


π0
k! (λµ )k , 0 ≤ k < c
π0
ck−cc!

(λµ )k , k ≥ c

where

π0 =

 c−1∑
k=0

(
λ
µ

)k 1
k!

+
(λ/µ)c

c!

(
1

1−λ/(cµ)

)
−1
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Proof. We check the assumption:

∞∑
k=0

k∏
i=1

λi−1

µi
=
c−1∑
k=0

k∏
i=1

λ
iµ

+
∞∑
k=c

 c∏
i=1

λ
iµ


 k∏
i=c+1

λ
cµ


=
c−1∑
k=0

(
λ
µ

)k 1
k!

+
1
c!

∞∑
k=c

(
λ
µ

)k (1
c

)k−c
=
c−1∑
k=0

(
λ
µ

)k 1
k!

+
(λ/µ)c

c!

∞∑
k=c

(
λ
cµ

)k−c
=

1

1− λ
cµ

, λ < cµ

Hence if λ < cµ the stationary distribution exists and is given by

π0 =

 c−1∑
k=0

(
λ
µ

)k 1
k!

+
(λ/µ)c

c!
1

1− λ
cµ


−1

and

πk = π0

k∏
i=1

λi−1

µi
=


π0
k! (λµ )k , 0 ≤ k < c
π0
ck−cc!

(λµ )k , k ≥ c

Example 23. A hair salon has five chairs. Customers arrive at the salon at
the rate of 6 per hour. The hair stylists each take, on average, half an hour to
service a customer, independent of arrival times.

(a) Bill, the owner, wants to know the long-term probability that no cus-
tomers are in the salon.

(b) Leslie, a potential customer, wants to know the average waiting time for
a haircut.

(c) Dennis, a hair stylist, wants to know the long-term expected number of
customers in the salon.

Solution. This is a M/M/5 queue with λ = 6 and generator matrix

Q =


−λ λ 0 0 · · ·
µ −(λ+µ) λ 0 · · ·
0 2µ −(λ+ 2µ) λ · · ·
...

...
...

...
. . .


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(a) This will just be π0. Using the formula in the Proposition, with λ = 6,
µ = 2, and c = 5, we find

π0 =
16

343
≈ 0.0466

(b) Since Lq =Wqλ, and we know that

Lq =
∞∑
k=c

(k − c)πk ,

at k = c all 5 seats are taken and there are 0 spots in the queue. Then

∞∑
k=c

(k − c)πk =
∞∑
k=0

(k − c) π0

ck−cc!

(
λ
µ

)k
=
π0

c!

(
λ
µ

)c ∞∑
k=c

(k − c) 1
ck−c

(
λ
µ

)k−c
=
π0

c!

(
λ
µ

)c ∞∑
l=0

l

cl

(
λ
µ

)l
=
π0

c!

(
λ
µ

)c ∞∑
l=0

l

(
λ
cµ

)l
=
π0

c!

(
λ
µ

)c(
λ
cµ

)(
1

1−λ/cµ

)2

= 0.35423

Thus we can see that

Wq =
Lq
λ

=
0.35423

6
= 0.059 hours ≈ 3.54 minutes

(c) This represents L in Little’s Formula for the whole chain. Since

W =Wq +Ws,

where we know Wq from above and

Ws =
1
µ

=
1
2
,

we deduce that W = 0.059 + 0.5 = 0.559 hours. Then

L = λW = 6(0.559) = 3.354 customers



3Brownian Motion

Brownian motion is apart of a bigger class of continuous-time, continuous-
state stochastic processes, called Wiener processes.

3.1 Introduction

Definition 26 (Brownian Motion). A continuous-time stochastic process
(Bt)t≥0 is called a standard Brownian motion if it satisfies the following
properties:

(1) B0 = 0

(2) (Independent Increments)
For all n ∈ N, 0 ≤ t1 < t2 < · · · < tn−1 < tn, the random variables
Bt2 −Bt1 , Bt3 −Bt2 , . . . ,Btn −Btn−1

are independent.

(3) (Stationary Increments)
For all 0 ≤ s < t the random variable Bt −Bs is normally distributed
with mean µ = 0 and variance σ2 = t − s.

(4) (Continuous paths)
The function t 7→ Bt is continuous.

Some consequences:

• Bt = Bt − 0 = Bt −B0 ∼N (0, t) for all t > 0.

• E[Bt] = 0, Var[Bt] = t.

• B5 −B3
d= B4 −B2

d= B2 −B0 ∼N (0,2).

• Bt is not independent of Bs for any (0 ≤ s < t), but Bt −Bs is independent
of Bs = Bs −B0.

• We find that

P[Bt ≤ c] =
∫ c

−∞

1
√

2πt
e−x

2/2t dx
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Brownian motion can be thought of as the motion of a particle that diffuses
randomly in time along the real line R. As t increases, the particle’s position is
more diffuse. Many applications in practice, namely modeling the evolution
of stock prices in mathematical finance.

Example 24. Let (Bt)t≥0 be a standard Brownian motion.

(a) For 0 < s < t, find the distribution of Bs +Bt .

(b) For s, t > 0, find the covariance of Bs and Bt .

Solution. (a) Let 0 < s < t. Observe that

Bs +Bt = 2Bs +Bt −Bs
Due to independent increments, Bs and Bt −Bs are independent. Hence,
2Bs and Bt − Bs are independent. Moreover, the sum of independent
normal random variables is again normal. Hence 2Bs +(Bt −Bs) = Bs +Bt
is normally distributed, with

E[Bs +Bt] = 0

Then

Var[Bs +Bt] = Var[2Bs + (Bt −Bs)]
= Var[2Bs] + Var[Bt −Bs]
= 4Var[Bs] + (t − s)
= 4s+ (t − s)
= 3s+ t

So Bs +Bt ∼N (0,3s+ t) .

(b) Since E[Bs] and E[Bt] are zero,

Cov(Bs,Bt) = E[BsBt]−E[Bs]E[Bt] = E[BsBt]

For s < t, Bt = Bs + (Bt −Bs). Then

E[BsBt] = E[Bs(Bs + (Bt −Bs))]
= E[B2

s +Bs(Bt −Bs)]
= E[B2

s ] +E[Bs(Bt −Bs)]
= Var[Bs] +E[Bs]E[Bt −B− s]
= s

For t < s, E[BtBs] = t through similar computations. Hence

Cov(Bs,Bt) = min{s, t} .
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3.2 Simulating Brownian Motion

Consider simulating Brownian motion on [0, t]:

• We have a grid of discrete time points 0 = t0 < t1 < · · · < tn−1 < tn = t.

• By stationary/independent increments, with Bt0 = B0 = 0,

Bti = Bti−1
+ (Bti −Bti−1

) d= Bti−1
+Xi i = 1,2, . . . ,n

where Xi ∼N (0, ti − ti−1) independent of Bti−1
.

• The recursive representation would be, where Z1, . . .Zn
i.i.d.∼ N (0,1),

Bti = Bti−1
+
√
ti − ti−1 ·Zi i = 1,2, . . . ,n

• This generates the Brownian motion random variables Bt0 ,Bt1 , . . . ,Btn on
the discrete grid.

• Typically equally spaced time points: ti = i · tn and hence ti − ti−1 = t/n.

Recall that a simple symmetric random walk is a sequence of random variables
(Sn)n≥0 with S0 = 0 such that

Sn =
n∑
i=1

Xi ,

where Xi are a sequence of i.i.d. random variables satisfying

P[Xi = 1] = P[Xi = −1] =
1
2

Then observe that

• (Sn)n≥0 is a discrete-time, discrete-state stochastic process with station-
ary and independent increments.

• By the Central Limit Theorem,

Sn −E[Sn]√
Var[Sn]

=
Sn√
n
−→ Z ∼N (0,1) as n→∞

This motivates us to define for each n ≥ 1 the continuous-time stochastic pro-

cess (B(n)
t )t≥0 by

(B(n)
t )t≥0 =

1
√
n
·
(
Sbntc +Xbntc+1 · (nt − bntc)

)
, t ≥ 0

via linearly interpolating the discrete values S0,S1,S2, . . . . That is,
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• A simple symmetric random walk is scaled both horizontally (speeding
up steps by factor n) and vertically (shrinking values by factor 1/

√
n)

• We have E[B(n)
t ] = 0 and Var[B(n)

t ] ≈ t for n large

• via CLT, B(n)
t −→ Z ∼N (0,1) as n→∞

Graphically, we can see various instances of the linear interpolation:

Proposition 21 (Donsker’s Invariance Principle). We have

(B(n)
t )t≥0 −→ (Bt)t≥0 for n→∞

where (Bt)t≥0 denotes a standard Brownian motion.

Here we have a convergence of stochastic processes; a "functional CLT" for the
entire path.
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3.3 Gaussian Process

Definition 27 (Multivariate Normal Distribution). The random vector
(X1, . . . ,Xn) ∈ Rn follows a multivariate normal distibution if for all num-
bers a1, . . . , an ∈R, the linear combination

a1 ·X1 + a2 ·X2 + · · ·+ an ·Xn ∈R

is normally distributed on R (univariate normal distribution). A multi-
variate normal distribution is completely determined by its mean vector

µ = (µ1, . . . ,µn)T = (E[X1], . . . ,E[Xn])T ∈Rn

and covariance matrix Σ ∈Rn×n, where

Σij = Cov(Xi ,Xj ) for all 1 ≤ i, j ≤ n.

In the case that Σ is invertible, the joint density function of the multivari-
ate normal distribution is given by

f (x) =
1

(2π)n/2|Σ|1/2
· exp

(
−1

2
(x −µ)TΣ−1(x −µ)

)
where x = (x1, . . . ,xn)T and |Σ| is the determinant of Σ.

Our notation for this will be X = (X1, . . . ,Xn)T ∼N (µ,Σ). Some properties:

• If X1, . . . ,Xn are independent with Xi ∼ N (µi ,σ
2
i ) for all i ∈ [1,n], then

X = (X1, . . . ,Xn)T is multivariate normally distributed with

µ =


µ1
...
µn

 , Σ =


σ2

1 0 · · · 0
0 σ2

2 · · · 0
...

...
. . .

...
0 0 · · · σ2

n


• If X = (X1, . . . ,Xn)T ∼ N (µ,Σ), A ∈ R

k×n, a ∈ R
k , then Y = A · X + a is

multivariate normal distributed with meanA·µ+a and covariance matrix
A ·Σ ·AT .

• If X1, . . . ,Xn are i.i.d. with Xi ∼ N (0,1) for all i ∈ [1,n], A ∈ Rn×n, µ ∈ Rn,
then Y = A ·X +µ ∼N (µ,Σ), where Σ = A ·AT .

This leads us to introduce the following concept:
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Definition 28 (Gaussian Process). A Gaussian process (Xt)t≥0 is a continuous-
time stochastic process with the property that for all n = 1,2, . . . and all
0 ≤ t1 < · · · < tn, the random vector

(Xt1 , . . . ,Xtn ) ∈Rn

follows a multivariate normal distribution. A Gaussian process is com-
pletely determined by its mean function

m(t) = E[Xt] t ≥ 0

and covariance function

c(s, t) = Cov(Xs,Xt) s, t ≥ 0.

The Gaussian process extends the multivariate normal distribution to stochas-
tic processes. The standard Brownian motion is a specific Gaussian process.

Proposition 22. A stochastic process (Bt)t≥0 is a standard Brownian motion if
and only if it is a Gaussian process with the following properties:

(1) B0 = 0

(2) (Mean function):
E[Bt] = 0 ∀t ≥ 0

(3) (Covariance function):

Cov(Bs,Bt) = min{s, t} ∀s, t ≥ 0

(4) (Continuous paths):

The function t 7→ Bt is continuous

Proof. (=⇒) : Let (Bt)t≥0 be a standard Brownian motion.

(i) Gaussian process: Let 0 < t1 < · · · < tn and a1, . . . , an ∈ R be arbitrary. By
independent increments,

Bt1 ,Bt2 −Bt1 , . . .Btn −Btn−1

are independent and normally distributed. Then

a1Bt1 + · · ·+ anBtn = (a1 + a2 + · · ·+ an)Bt1 + (a2 + · · ·+ an)Bt2 + · · ·+ an(Btn −Btn−1
),

which is univariate normally distributed as a linear combination of in-
dependent normally distributed random variables.
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(ii) Desired properties:

(1) B0 = 0

(2) E[Bt] = 0, for all t ≥ 0

(3) Cov(Bt ,Bs) = min{s, t}, for all s, t > 0

(4) (Bt)t≥0 has continuous paths

(⇐=) : Let (Bt)t≥0 be a Gaussian process with the four properties. We want to
show that (Bt)t≥0 has stationary and independent increments.

(i) Since (Bt)t≥0 is Gaussian, Bt − B0 = Bt ∼ N (0, t) for all t > 0. Similarly,
Bt+s −Bs is normally distributed with E[Bt+s −Bs] = 0, and

Var[Bt+s −Bs] = Var[Bt+s] + Var[−Bs] + 2Cov(Bt+s,−Bs)
= Var[Bt+s] + Var[Bs]− 2Cov(Bt+s,Bs)

= t + s+ s − 2s

= t

Hence Bt+s −Bs
d= Bt −B0, so we have stationary increments.

(ii) Let 0 ≤ q,r ≤ s < t. Then

Cov(Br −Bq,Bt −Bs) = E[(Br −Bq)(Bt −Bs)]−E[Br −Bq]E[Bt −Bs]

= E[BrBt]−E[BrBs]−E[BqBt] +E[BqBs]

= r − r − q+ q

= 0

Hence (Br −Bq) and (Bt −Bs) are uncorrelated, so they are independent
and normally distributed. Thus we have independent increments.

3.4 Transformations of Brownian Motion

Proposition 23. Let (Bt)t≥0 be a standard Brownian motion. Then, each of the
following transformations is again a standard Brownian motion:

(1) (Reflection): (−Bt)t≥0.

(2) (Translation): (Bt+s −Bs)t≥0 for all s ≥ 0.

(3) (Rescaling): (a−1/2Bat)t≥0 for all a > 0.

(4) (Time Inversion):

Wt =

Wt = 0, t = 0

t ·B1/t , t > 0
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Proof. We only prove the rescaling transformation. Let Xt = Bat/
√
a. We want

to show (Xt)t≥0 is a Brownian motion. To do this, we show (Xt)t≥0 is a Gaussian
process with

(i) X0 = 0

(ii) E[Xt] = 0

(iii) Cov(Xs,Xt) = min{s, t}

(iv) Continuous sample paths

First, for 0 < t1 < · · · < tn and a1, . . . , an ∈R arbitrary,
n∑
i=1

aiXi =
n∑
i=1

ai√
a
Bati

is univariate normally distributed because (Bt)t≥0 is a Gaussian process. Hence,
(Xt)t≥0 is a Gaussian process. Moreover,

(i) X0 = 1√
a
B0 = 0

(ii) E[Xt] = 1√
a
E[Bat] = 0

(iii) Cov(Xs,Xt) = Cov( 1√
a
Bas,

1√
a
Bat) = 1

a Cov(Bas,Bat) = 1
a min{as,at} = min{s, t}

(iv) Continuity of t 7→ Xt follows from continuity of (Bt)t≥0.

A remarkable fact about Brownian motion is that the sample paths are everywhere-
continuous, yet nowhere-differentiable. This is due to the fractal structure of
Brownian motion sample paths: jagged character of the paths remain jagged
at all time scales.

If we want to change the starting value,

Proposition 24. Let (Bt)t≥0 be a standard Brownian motion. For x ∈ R the
process (Xt)t≥0 defined by

Xt = x+Bt t ≥ 0

is called Brownian motion started at x.

Some properties:

• (Xt)t≥0 retains all properties of standard Brownian motion, like inde-
pendent/stationary increments, and continous sample paths.

• Xt ∼N (x, t), for all t > 0.

• Xt −Xs ∼N (0, t − s), for all t ≥ s > 0.
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3.5 Stopping Times and Distributions

Definition 29 (Markov Process). A continuous-state, continuous-time
stochastic process (Xt)t≥0 is a Markov process if

P[Xs+t ≤ y | Xu , 0 ≤ u ≤ s] = P[Xs+t ≤ y | Xs]

for all s, t ≥ 0 and all y ∈R. In addition, the process is time homogeneous
if

P[Xs+t ≤ y | Xs] = P[Xt ≤ y | X0]

In words, it is conditional on the present, past and future independent. As a
consequence of stationary and independent increments, Brownian motion is
an example of a Markov process.

Definition 30 (Stopping Time). A positive random variable S is called
a stopping time for a stochastic process (Xt)t≥0 if, for each s ∈ R+, the
occurrence of the event {S ≤ s} can be determined from the stochastic
process (Xt)0≤t≤s up to time s.

An important example of a stopping time is as follows:

Definition 31 (First Hitting Time). For a ∈R let

Ta = min{t ≥ 0 : Bt = a}

be the first hitting time that Brownian motion hits level a.

The random variable Ta is a stopping time for a Brownian motion (Bt)t≥0.
Indeed, for any s > 0, the occurrence of the event {Ta ≤ s} can be determined
from the Brownian motion (Bt)0≤t≤s up to time s.

A counterexample would be the random time

L = max{0 ≤ t ≤ 1 : Bt = 0},

or the last visit to 0 in [0,1]. This is not a stopping time for a Brownian motion
(Bt)t≥0. Indeed, for any 0 < s < 1, the occurrence of the event {L ≤ s} can
only be determined from the Brownian motion (Bt)0≤t≤1 but not just from the
Brownian motion (Bt)0≤t≤s up to time s.

Proposition 25. Let (Bt)t≥0 be a standard Brownian motion and S a stopping
time for (Bt)t≥0. Then

B̃t = Bs+t −BS t ≥ 0

is a standard Brownian motion independent of (Bt)0≤t≤S .
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This is also known as the strong Markov property. This generalizes Proposition
24 and the Translation property. In particular, any constant S = s ≥ 0 is a
stopping time.

Example 25. For the first hitting time Ta, show that (BTa + t)t≥0 is again a
Brownian motion starting at BTa = a and independent of (Bt)0≤t≤Ta .

Proposition 26 (Reflection Principle). For a standard Brownian motion
(Bt)t≥0, and first hitting time Ta with a > 0, the process

B∗t =

Bt , 0 ≤ t ≤ Ta
a− (Bt − a) = 2a−Bt , t ≥ Ta

is again a standard Brownian motion. The process is also called Brownian
motion reflected at Ta.

This can be illustrated as such:

For a standard Brownian motion (Bt)t≥0, let

Mt = max
0≤s≤t

Bs, t ≥ 0

be the maximum of standard Brownian motion on [0, t].

Proposition 27. (1) For a > 0, y ≥ 0, t > 0, it holds that

P[Mt ≥ a, Bt ≤ a− y] = P[Bt ≥ a+ y].

(2) For a > 0 it holds that

P[Mt ≥ a] = 2 ·P[Bt ≥ a] = P[|Bt | ≥ a] = P[Ta ≤ t].

In particular, Mt
d= |Bt |.
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Proof. 1) We have

P[Bt ≤ a− y,Mt ≥ a] = P[Bt ≤ a− y,Ta ≤ t]
= P[B∗t ≤ a− y,T ∗a ≤ t]
= P[2a−Bt ≤ a− y,Ta ≤ t]
= P[Bt ≥ a+ y,Ta ≤ t]
= P[Bt ≥ a+ y]

2) We have

P[Mt ≥ a] = P[Mt ≥ a,Bt ≤ a] +P[Mt ≥ a,Bt > a]
= P[Bt ≥ a] +P[Bt > a]

= 2P[Bt ≥ a]

Moreover,

2P[Bt ≥ a] = P[Bt ≥ a] +P[Bt ≥ a]
= P[Bt ≥ a] +P[−Bt ≥ a]
= P[|Bt | ≥ a]

Finally, since {Mt ≥ a} = {Ta ≤ t}, we get that P[Mt ≥ a] = P[Ta ≤ t].

Proposition 28 (Distributions of Maximum and Hitting Times). (1)
(Mt ,Bt) has density

f(Mt ,Bt)(m,x) =

√
2
πt3
· (2m− x) · exp

(
− (2m− x)2

2t

)
for all m > 0, x ≤m.

(2) Mt has density

fMt
(x) =

√
2
πt
· exp

(
− x

2

2t

)
, x > 0

(3) Ta for a ∈R has density

fTa(t) =
|a|
√

2πt3
· exp

(
− a

2

2t

)
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Proof. We only prove (2). The CDF of Mt will be

FMt
(x) = P[Mt ≤ x]

= 1−P[Mt > x]

= 1−P[Mt ≥ x]

= 1− 2P[Bt ≥ x]

= 1−P[Bt ≤ x]

= 1−P[
√
tZ ≤ x]

= 1−Φ
(
x
√
t

)
This is equivalent to 2Φ( x√

t
)− 1. Then the density of Mt will be

fMt
(x) =

d
dx
FMt

(x)

= 2Φ ′
(
x
√
t

)(
1
√
t

)
=

2
√
t

1
√

2π
· exp

(
− 1

2
x2

t

)

It follows that there are some surprising properties about the first time hitting
distribution:

• For all a ∈R, we have
P[Ta <∞] = 1,

no matter how large a is.

• For all a ∈R, we have
E[Ta] =∞,

no matter how small a is.

Definition 32 (Arcsine Distribution). A random variable X on [0,1] is
called arcsine distributed if the cumulative distribution function is given
by

P[X ≤ x] =
2
π

arcsin(
√
x), 0 ≤ x ≤ 1
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and the probability density function is given by

fX(x) =
1

π
√
x(1− x)

, x ∈ (0,1)

For a standard Brownian motion (Bt)t≥0, define the following random vari-
ables:

• Proportion of time that (Bt)t≥0 is positive on [0,1]:

C = |{0 ≤ t ≤ 1 : Bt ≥ 0}|.

• Time of last visit to 0 in [0,1]:

L = max{0 ≤ t ≤ 1 : Bt = 0}.

• Time at which (Bt)t≥0 obtains its maximum on [0,1]:

M = argmax{Bt : 0 ≤ t ≤ 1}.

It turns out that one can show that

P[C ≤ x] d= P[L ≤ x] d= P[M ≤ x] =
2
π

arcsin(
√
x),

for x ∈ [0,1]. In other words, all these random variables follow the arcsine
distribution!

3.6 Variations and Applications

Definition 33 (Brownian Motion with Drift). Let (Bt)t≥0 be a standard
Brownian motion. For µ ∈R and σ > 0, the process defined by

Xt = µt + σBt t ≥ 0

is called Brownian motion with drift parameter µ and variance σ2.

Some properties:

• E[Xt] = µt, Var[Xt] = σ2t, for all t ≥ 0

• Stationary and independent increments with

Xt −Xs
d= Xt−s −X0 ∼N (µ(t − s),σ2(t − s))
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Definition 34 (Geometric Brownian Motion). Let (Xt)t≥0 be a Brownian
motion with drift parameter µ ∈ R and variance parameter σ2 > 0. The
process (Gt)t≥0 defined by

Gt = G0e
Xt t ≥ 0

where G0 > 0, is called geometric Brownian motion.

Definition 35 (Lognormal Distribution). A positive random variable X
is called log-normally distributed with parameters µ ∈R and σ2 > 0 if

log(X) ∼N (µ,σ2)

We denote this as X ∼ LN (µ,σ2).

Consequently, if X ∼ LN (µ,σ2), then X = eZ , where Z =N (µ,σ2).

Proposition 29. Let (Gt)t≥0 be a geometric Brownian motion. Then,

(1) Gt ∼ LN (log(G0) +µt,σ2t)

(2) It holds that

E[Gt] = G0e
t(µ+σ2/2), Var[Gt] = G2

0e
2t(µ+σ2/2(etσ

2
− 1)

(3) For all n ∈N, and 0 ≤ t1 < t2 < · · · < tn−1 < tn, the random variables

Gt2
Gt1

,
Gt3
Gt2

, . . . ,
Gtn
Gtn−1

are independent.

(4) For all 0 ≤ s < t, we have

Gt
Gs

d=
Gt−s
G0
∼ LN (µ(t − s),σ2(t − s))

(5) Let Yk = Gk/Gk−1 for k = 1, . . . ,n, and let Yk be i.i.d. Then

Gn = G0 ·Y1 ·Y2 · · ·Yn

Proof. We know Gt = G0e
Xt with Xt = µt + σ2Bt , where (Bt)t≥0 is a standard

Brownian motion.
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(1) If Gt ∼ LN (log(G0) +µt,σ2t), then

log(Gt) = log(G0e
µt+σBt ) = log(G0) +µt + σBt ∼N (µt + log(G0),σ2t)

(2) We have

E[Gt] = E[G0e
µt+σBt ] = G0e

µt
E[eσBt ] = G0e

µte
1
2σ

2t = G0e
(µ+ 1

2σ
2)t

Then

Var[Gt] = E[G2
t ]− (E[Gt])

2

= E[G2
0e

2µt+2σBt −G2
0e

2(µ+ 1
2σ

2)t

= G2
0e

2µte2σ2t −G2
0e

2(µ+ 1
2σ

2)t

= G2
0e

2t(µ+ 1
2σ

2)(etσ
2
− 1)

(3) Since
Gt2
Gt1

=
G0e

µt2+σBt2

G0e
µt1+σBt1

= eµ(t2−t1)+σ (Bt2−Bt1 )

Gt3
Gt2

=
G0e

µt3+σBt3

G0e
µt2+σBt2

= eµ(t3−t2)+σ (Bt3−Bt2 )

Then (Bt2 −Bt1 ) is independent of (Bt3 −Bt2 ), so
Gt2
Gt1

and
Gt3
Gt2

are indepen-

dent. Moreover,

Gt
Gs

= eµ(t−s)+σ (Bt−Bs) d= eµ(t−s)+σBt−s =
Gt−s
G0

As an application of geometric Brownian motion, stock prices can be modeled
as a geometric Brownian motion:

St = S0 · eRt , Rt = µt + σBt , t ≥ 0

We interpret St as the price at time t > 0, Rt the "log-return" on [0, t], µ the
expected annual return, and σ the annual volatility. The model assumes
that the daily log-returns log(Si∆t/S(i−1)∆t for i ∈ [1,250], and ∆t = 1/250 are
i.i.d. N (µ∆t,σ2∆t)-normally distributed. This model is called the Osborne-
Samuelson market model, or the Black-Scholes-Merton model. The pros for
this model are

• Prices are positive

• It models exponential growth
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However, there exist a few cons as well:

• Log-returns from historical prices are typically not independent and
normally distributed

• Normal distribution underestimates occurrences of extreme price moves

Example 26 (Black-Scholes Option Price Formula). A K-strike call option has
payoff at maturity T for the buyer

(ST −K)+ =

ST −K, ST > K

0, ST ≤ K

where ST denotes the stock price at time T . Assume that (St)t≥0 follows a
geometric Brownian motion with drift

µ = r − σ2/2

where r > 0 denotes the annual risk-free interest rate. Show that the present
value of the expected payoff is given by

E[e−rT (ST −K)+] = S0Φ(d+)−Ke−rTΦ(d−),

where

d± =
log(S0/K) + (r ± 1

2σ
2)T

σ
√
T

.
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Solution. We first split the present value of the expected payoff into

E[e−rT (St−K)+] = E[e−rT (ST −K)·1{ST −K≥0}] = e−rTE[ST ·1{ST ≥K}]−Ke
−rT

E[1{ST ≥K}]

The second term can be calculated to be:

E[1{ST ≥K}] = P[ST ≥ K]

= P[S0e
µT+σBT ≥ K]

= P

[
µT + σBT ≥ log

K
S0

]
= P

BT ≥ log( KS0
)−µT
σ


= P

Z ≥ log( KS0
)−µT

σ
√
T


= P

−Z ≥ log( KS0
)−µT

σ
√
T


= P

Z ≤ log(S0
K ) +µT

σ
√
T


= Φ(d−)

Then the first term can be calculated to be:

E

[
ST ·1{ST ≥K}

]
= E

S0e
µT+σ

√
TZ ·1{

Z≥ log(K/S0)−µT
σ
√
T

}
Let β = log(K/S0)−µT

σ
√
T

. Then this expectation is equal to

E[S0e
µT+σ

√
T z ·1{z≥β}] = S0e

µT
∫ ∞
β
eσ
√
T x 1
√

2π
e−

1
2 x

2
dx

= S0e
µT+ 1

2σ
2T

∫ ∞
β

1
√

2π
e−

1
2 x

2+σ
√
T x− 1

2σ
2T dx

= S0e
µT+ 1

2σ
2T

∫ ∞
β−σ
√
T

1
√

2π
e−

1
2 y

2
dy

= S0e
µT+ 1

2σ
2T
P

Z ≥ log( KS0
)−µT

σ
√
T

− σ
√
T


= S0e

µT+ 1
2σ

2T
P

Z ≤ log(S0
K ) +µT + σ2T

σ
√
T


= Φ(d+)
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We can finally put it all together and see

e−rTE[ST ·1{ST ≥K}]−Ke
−rT

E[1{ST ≥K}] = e−rT S0e
µT+ 1

2σ
2TΦ(d+)−Ke−rTΦ(d−)

= S0Φ(d+)−Ke−rTΦ(d−)



4Stochastic Calculus

Suppose we have a standard Brownian motion (Bt)t≥0. What do the following
expressions mean? ∫ t

0
Bs ds, and

∫ t

0
Bs dBs.

More generally, for any stochastic process (Xt)t≥0, we want to make sense of∫ t

0
Xs ds and

∫ t

0
Xs dBs.

For the latter, we say that (Xt)t≥0 is integrated with respect to the Brownian
motion (Bt)t≥0. This more generally is called a stochastic integral.

4.1 Introduction

We want to define the integral ∫ t

0
Bs ds

pathwise. For each scenario/realization ω, the function s 7→ Bs(ω) is continu-
ous and the integral

∫ t
0 Bs(ω)ds is well defined as the limit of a Riemann sum∫ t

0
Bs(ω)ds ∆= lim

n→∞

n∑
i=1

Bti−1
(ω)(ti − ti−1), ∀ω,

for any partition 0 = t0 < t1 < · · · < tn−1 < tn = t of [0, t] such that the length of
the sub-intervals converge to 0 as n→∞.

Now we would like to define the integral∫ t

0
Bs dBs

pathwise. Naively, we could, for all scenarios ω, set∫ t

0
Bs(ω)dBs(ω) ∆= lim

n→∞

n∑
i=1

Bti−1
(ω)(Bti (ω)−Bti−1

(ω)).

The problem with this is that the limit does not exist for allω. To remedy this,
we can consider the limit in the mean-square sense.
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Definition 36 (Mean-Square Convergence). A sequence of random vari-
ables X0,X1, . . . is said to converge to X in mean-square if

lim
n→∞

E[(Xn −X)2] = 0.

This gives rise to the so-called Itô integral. We define the stochastic integral of
a process (Xt)t≥0 with respect to Brownian motion (Bt)t≥0 as the mean-square
limit of

lim
n→∞

n∑
i=1

Xti−1
(Bti −Bti−1

) ∆=
∫ t

0
Xs dBs

Some things to keep in mind:

• This requires technical assumptions on the process (Xt)t≥0. (Learn in
PSTAT 213!)

•
∫ t

0 Xs dBs is a random variable for all t > 0.

•
(∫ t

0 Xs dBs
)
t≥0

is a continuous-time stochastic process.

• If (Xt)t≥0 satisfies E
[∫ t

0 X
2
s ds

]
<∞, the process

(∫ t
0 Xs dBs

)
t≥0

is a martin-
gale with respect to Brownian motion.

Stochastic integration gives rise to a larger class of stochastic processes:

Definition 37 (Itô Process). Let (Bt)t≥0 be a standard Brownian motion.
Let (Ht)t≥0 and (Kt)t≥0 be a stochastic process satisfying

∫ t
0 |Hs |ds <∞ and∫ t

0 K
2
s ds <∞. A continuous-time stochastic process of the form

Xt = X0 +
∫ t

0
Ks ds+

∫ t

0
Hs dBs, t ≥ 0

is called an Itô process.

The shorthand form of this, also called the differential form or the Itô dynamics,
is

dXt = Kt dt +Ht dBt ,

where Kt is the drift coefficient and Ht is the diffusion coefficient.

Example 27. Let (Bt)t≥0 be a standard Brownian motion. The Brownian mo-
tion with drift parameter µ ∈ R and variance parameter σ2 > 0, starting at
x ∈R given by

Xt = x+µt + σBt = x+
∫ t

0
µds+

∫ t

0
σ dBs
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is an Itô process with Kt = µ and Ht = σ . The Itô dynamics of this will be

dXt = µdt + σ dBt .

In particular, this shows us that (Bt)t≥0 is an Itô process with µ = 0 and
σ = 1. Now we would like to explicitly evaluate some stochastic integrals.

Example 28. Evaluate the stochastic integral∫ t

0
dBs.

Solution. We have that our function is g(x) = 1. Thus our integral is normally
distributed with mean 0 and variance

∫ t
0 ds = t, which is identical to Bt . Fur-

thermore, our integral defines a continuous Gaussian process with mean 0
and covariance function ∫ min{s,t}

0
dx = min{s, t}.

Thus
(∫ t

0 dBs
)
t≥0

is a standard Brownian motion, and we conclude that∫ t

0
dBs = Bt .

Example 29. Evaluate the stochastic integral∫ t

0
es dBs.

Solution. The integral will be normally distributed with mean 0 and variance∫ t

0
(es)2 ds =

∫ t

0
e2s ds =

1
2
e2t .

Stochastic integrals follow many of the same properties as normal inte-
grals do. For example, for functions g and h and constants α and β, we find∫ b

a
[αg(s) + βh(s)]dBs = α

∫ b

a
g(s)dBs + β

∫ b

a
h(s)dBs. (Linearity)

Then for a < c < b, ∫ b

a
g(s)dBs =

∫ c

a
g(s)dBs +

∫ b

c
g(s)dBs.

Proposition 30 (Integration by Parts). For g, a differentiable function, we have
that ∫ t

0
g(s)dBs = g(t)Bt −

∫ t

0
Bsg
′(s)ds.
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4.2 Itô Calculus

We can define stochastic integration for Itô processes.

Definition 38 (Itô Integral). Let Xt = X0 +
∫ t

0 Ks ds +
∫ t

0 Hs dBs be an Itô

process and let (Lt)t≥0 be a stochastic process such that
∫ t

0 |LsKs |ds < ∞
and

∫ t
0 L

2
sH

2
s ds <∞. Then we can define the Itô integral as

Yt =
∫ t

0
Ls dXs =

∫ t

0
LsKs ds+

∫ t

0
LsHs dBs.

Note that the stochastic integral

(Yt)t≥0 =
(∫ t

0
Ls dXs

)
t≥0

is again an Itô process with differential form/Itô dynamics of

dYt = LtdXt = LtKt dt +LtHt dBt ,

because dXt = Kt dt +Ht dBt .

Proposition 31 (Itô’s Lemma). Let Xt = X0 +
∫ t

0 Ks ds +
∫ t

0 Hs dBs be an Itô pro-
cess and let f : R→ R be a twice continuously differentiable function. Then,
the stochastic process (f (Xt))t≥0 is again an Itô process of the form

f (Xt) = f (X0) +
∫ t

0
f ′(Xs)dXs +

1
2

∫ t

0
f ′′(Xs)H

2
s ds

= f (X0) +
∫ t

0

(
f ′(Xs)Ks +

1
2
f ′′(Xs)H

2
s

)
ds+

∫ t

0
f ′(Xs)Hs dBs.

The Itô dynamics of the process (f (Xt))t≥0 will be:

df (Xt) = f ′(Xt)dXt +
1
2
f ′′(Xt)H

2
t ds

=
(
f ′(Xt)Kt +

1
2
f ′′(Xt)H

2
t

)
dt + f ′(Xt)Ht dBt
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Proposition 32 (Extension of Itô’s Lemma). Let Xt = X0 +
∫ t

0 Ks ds+
∫ t

0 Hs dBs be
an Itô process and let g : [0,∞)×R→R be a twice continuously differentiable
function. Then the stochastic process (g(t,Xt))t≥0 is again an Itô process of the
form

g(t,Xt) = g(0,X0) +
∫ t

0

∂g

∂t
(s,Xs)ds+

∫ t

0

∂g

∂x
(s,Xs)dXs +

1
2

∫ t

0

∂2g

∂x2 (s,Xs)H
2
s ds

= g(0,X0) +
∫ t

0

(
∂g

∂t
(s,Xs) +

∂g

∂x
(s,Xs)Ks +

1
2
∂2g

∂x2 (s,Xs)H
2
s

)
ds

+
∫ t

0

∂g

∂s
(s,Xs)Hs dBs

Example 30. Let (Bt)t≥0 be a standard Brownian motion. Compute the Itô
dynamics of (Bt)t≥0.

Solution. We apply Itô’s Lemma to (Bt)t≥0, which is an Itô process by

Bt = B0 +
∫ t

0
0ds =

∫ t

0
1dBs,

and the function f (x) = x2. We have that f ′(x) = 2x and f ′′(x) = 2. This yields

B2
t = f (Bt) = f (B0) +

∫ t

0
f ′(Bs)dBs +

1
2

∫ t

0
f ′′(Bs) · 12 ds

= 0 +
∫ t

0
2dBs +

1
2

∫ t

0
2ds

= 2
∫ t

0
Bs dBs + t

Hence our Itô dynamics will be∫ t

0
dB2

s =
∫ t

0
ds+

∫ t

0
2Bs dBs⇐⇒ dB2

s = ds+ 2Bs dBs

In particular, observe that we obtain an explicit expression for the stochastic
integral of Brownian motion with respect to Brownian motion, namely∫ t

0
Bs dBs =

1
2

(B2
t − t),

which is a martingale with respect to (Bt)t≥0.

Example 31. Let (Bt)t≥0 be a standard Brownian motion. Show that∫ t

0
sBs dBs =

1
2
tB2
t −

1
2

∫ t

0
(B2
s + s)ds.
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Solution. We apply the Extension of Itô’s Lemma to (Bt)t≥0 and the function
g(t,x) = tx2. We have that

∂g

∂t
(t,x) = x2,

∂g

∂x
(t,x) = 2 + x,

∂2g

∂x2 (t,x) = 2t.

This yields:

g(t,Bt) = tB2
t = g(0,Bt) +

∫ t

0

∂g

∂t
(s,Bs)ds+

∫ t

0

∂g

∂x
(s,Bs)dBs +

1
2

∫ t

0

∂2g

∂x2 (s,Bs) · 12 ds

=
∫ t

0
B2
s ds+

∫ t

0
2sBs dBs +

1
2

∫ t

0
2sds

= 2
∫ t

0
sBs dBs +

∫ t

0
(B2
s + s)ds

This means ∫ t

0
sBs dBs =

1
2
tB2
t −

∫ t

0
(B2
s + s)ds

The Itô dynamics of this will be

dg(t,Bt) = d(t,B2
t ) = (B2

t + t)dt + 2tBtdBt .

4.3 Stochastic Differential Equations

Definition 39 (Stochastic Differential Equation). A stochastic differential
equation, or SDE, is an equation of the form

dXt = b(Xt)dt + σ (Xt)dBt , X0 = x,

where x ∈R, b : R→R, σ : R→R are given.

We want to find a stochastic process (Xt)t≥0 which satisfies the integral equa-
tion

Xt = x+
∫ t

0
b(Xs)ds+

∫ t

0
σ (Xs)dBs, t ≥ 0.

Example 32. Let (Bt)t≥0 be a standard Brownian motion, x0,µ ∈ R and σ > 0.
Find a solution (Xt)t≥0 to the stochastic differential equation

dXt = µXt dt + σXt dBt , X0 = x0.

Solution. We claim that geometric Brownian motion,

Xt = X0e
(µ− 1

2σ
2)t+σBt , t ≥ 0
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solves the SDE. Observe that Xt = f (Zt), where f (x) = x0e
x and (Zt)t≥0 is an

Itô process given by

Zt =
(
µ− 1

2

)
t + σBt =

∫ t

0

(
µ− 1

2
σ2

)
ds+

∫ t

0
σ dBs

⇐⇒ dZt =
(
µ− 1

2
σ2

)
dt + σ dBt .

Then we apply Itô’s Lemma to (Zt)t≥0 and f (x) = x0e
x. We have

f ′(x) = x0e
x = f (x), f ′′(x) = x0e

x = f (x).

This yields, in Itô dynamics,

dXt = df (Zt) = f ′(Zt)dZt +
1
2
f ′′(Zt)σ

2 dt

= f (Zt)
(
µ− 1

2
σ2

)
dt + f (Zt)σ dBt +

1
2
f (Zt)σ

2 dt

= f (Zt)µdt + f (Zt)σ dBt
= Xtµdt +Xtσ dBt

Hence Xt solves the SDE.

Example 33 (Ornstein-Uhlenbeck Process). Let (Bt)t≥0 be a standard Brown-
ian motion and x0,µ,σ > 0 are constants. Find a solution (Xt)t≥0 to the SDE

dXt = −r(Xt −µ)dt + σ dBt , X0 = x0.

Solution. We apply the Extension of Itô’s Lemma to the Itô process (Xt)t≥0
satisfying the SDE above and the function g(t,x) = ertx. We find that

∂g

∂t
(t,x) = rertx,

∂g

∂x
(t,x) = ert ,

∂2g

∂x2 (t,x) = 0.

This yields in differential form

dg(t,Xt) =
∂g

∂t
(t,Xt)dt +

∂g

∂x
(t,Xt)dXt +

1
2
∂2g

∂x2 (t,Xt)σ
2 dt

= rertXt dt − rert(Xt −µ)dt + ertσ dBt
= µrert dt + σert dBt

Hence

g(t,Xt) = ertXt = g(0,X0) +
∫ t

0
µrers ds+

∫ t

0
σers dBs

= x0 +µ(ert − 1) +
∫ t

0
σers dBs
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This implies that the solution (Xt)t≥0 to the SDE is given by

Xt = e−rtx0 +µ(1− e−rt) + e−rtσ
∫ t

0
ers dBs.


