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Introduction

These are the lecture notes for PSTAT 213ABC - Probability Theory & Stochas-
tic Processes, from 2020-2021 school year taught by Tomoyuki Ichiba and
Raya Feldman. This course covers generating functions, discrete and contin-
uous time Markov chains; random walks; branching processes; birth-death
processes; Poisson processes, point processes.
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1Preliminaries

1.1 Random Variables

We start by reviewing what a random variable is.

Definition 1 (Random Variable). On a probability space (Ω,F ,P), we
define a random variable as a function X(ω) : Ω → R ∪ {±∞} from the
sample space Ω to the extended real line R∪ {±∞}.

We associate it with probability P by

P[X ∈ A] = P[X(ω) ∈ A] = P[{ω : X(ω) ∈ A}),

for every Borel measurable set A. It induces a measure called probability dis-
tribution defined as

µ(A) = P[X(ω) ∈ A]; A ∈ B = σ (R),

where B = σ (R) is the Borel sigma-algebra.

Definition 2 (Finite Random Variable). We say a random variable X is
finite if P[X = ±∞] = 0.

Now recall what the cumulative distribution function of a random variable
is.

Definition 3 (Cumulative Distribution Function). The cumulative distri-
bution function F (or c.d.f ) of X is defined by

FX(x) = P[X ≤ x] = P[X ∈ (−∞,x]], ∀x ∈R

=
∫ x

−∞
1dP[ω] =

∫ x

−∞
P[dω].

Mathematical expectation is in turn defined as

E[X]B
∫ ∞
−∞
xdFX(x),
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and given a measurable function g : R→R, we have

E[g(X)] =
∫ ∞
−∞
g(x)dF(x) =

∫ ∞
−∞
g(x)F(dx).

Variance is then defined to be

Var[X]B E[(X −E[X])2] = E[X2]− (E[X])2.

Definition 4. Let X and Y be two random variables. The random vector
(X,Y ) induces a probability distribution η by

η(A)B P[(X,Y ) ∈ A] = P[{ω : (X(ω),Y (ω)) ∈ A]; A ∈ B ×B.

Sometimes we write (X,Y )−1(A) = {ω : (X,Y ) ∈ A} for such A. Now we con-
sider the joint probability cumulative distribution function, which is a two-
dimensional analogue of the c.d.f:

F2(x1,x2)B P[X1 ≤ x1,X2 ≤ x2]; (x1,x2) ∈R2.

The joint c.d.f. has the following properties, coming from the probability
measure:

• (Monotonicity): If x1 ≤ y1 and x2 ≤ y2, then

F2(x1,x2) ≤ F2(y1,x2), F2(x1,x2) ≤ F2(x1, y2).

• (Right continuity): For every (x1,x2) ∈ R
2 and (a,b) ∈ R

2 with x1 ≥ a,
x2 ≥ b, we have

lim
x1→a+

F2(x1,x2) = F2(a,x2), lim
x2→b+

F2(x1,x2) = F2(x1,b).

• (Left limits exist): Both limx1→a− F2(a,x2) and limx2→b− F2(x1,b) exist.

• (Consistency): We have

lim
x2→∞

F2(x1,x2) = FX(x1) = P[X ≤ x1], lim
x1→∞

F2(x1,x2) = FY (x2) = P[Y ≤ x2].

In general, for n−dimensional random vectors (X1, . . . ,Xn), we consider the
joint c.d.f. Fn : Rn→ [0,1]. We are allowed to do this because of Kolmogorov:



CHAPTER 1. PRELIMINARIES 7

Proposition 1 (Kolmogorov’s Consistency Theorem). Suppose that for every
n ≥ 2, a c.d.f. Fn : Rn→ [0,1] of n variables satisfy the consistency condition.
That is, there exists a c.d.f. Fm : Rm→ [0,1] such that

lim
xm+1,...,xn→∞

Fn(x1, . . . ,xm,xm+1, . . . ,xn) = Fm(x1, . . . ,xm),

for every 1 ≤ m < n. Then there exists a probability space and a sequence of
random variables X1, . . . ,Xn on it such that (X1, . . . ,Xn) has the joint c.d.f. Fn.

1.2 Classic Examples

Here are typical examples of random sequences and random functions.

I.I.D. Sequences

We say the sequence (X1, . . . ,Xn) of random variables is i.i.d. (independently
and identically distributed), if the c.d.f. F is common for all random variables.
That is,

P[Xi ≤ x] = F(x),

for every i = 1,2, . . . ,n, and x ∈R, We must also have independence, or

P[X1 ≤ x1, . . . ,Xn ≤ xn] =
n∏
i=1

P[Xi ≤ xi] =
n∏
i=1

F(xi).

Random Walks

Consider the i.i.d. sequence {ξi , i ≥ 1} of random variables. We define the
random walk as

Xn B ξ1 + · · ·+ ξn; n ≥ 1,

withX0 = 0. This gives us the recursive relationshipXn+1 = Xn+ξn+1, for n ≥ 0.
We call this an integrated process I(1) in the study of time series analysis.

Discrete-Time Markov Chains

Let S be a finite set (our state space). We call the sequence {Xn,n ≥ 0} of
S−valued random variables a time-homogeneous Markov chain if there exists
a transition probability matrix

M B (Mi,k)i,k∈S ,

with
∑
k∈SMi,k = 1 for every i ∈ S , such that

P[Xn+1 = k | Xn = i] =Mi,k ; i,k ∈ S , n = 0,1,2, . . .
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Martingales

The sequence {Xn,n ≥ 0} associated with filtration {Fn,n ≥ 0} is called a mar-
tingale if

(1) Xn is Fn−measurable,

(2) E[|Xn|] <∞,

(3) E[Xn+1 | Fn] = Xn; n ≥ 0.

Here, the filtration {Fn,n ≥ 0} is an increasing sequence of sigma fields, i.e.,
Fn ⊂ Fn+1, for n ≥ 0.

Random Functions

Given a random walk {Xn,n ≥ 1}, consider a random function

Xn(t,ω)B
bntc∑
i=1

Xi(ω); t ≥ 0.

As a function of t ≥ 0, Xn(t) = Xn(t,ω) is right continuous with left limits. We
may also consider a continuous function by interpolating linearly the sample
path of random walk. Then the resulting function is a random continuous
function.

1.3 Perron-Frobenius (Preview)

Now, as n→∞, what will be the limiting object of our random element Xn?
And how do we quantify the convergence of random elements? To do this, we
examine discrete-time Markov chains.

Consider a Markov chain with transition probability M = (Mi,j )1≤i,j≤n on
S = {1, . . . ,n} with Mi,j ≥ 0 for every i, j ∈ S and∑

j∈S
Mi,j = 1,

for every i ∈ S .
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Proposition 2 (Perron-Frobenius). Assume that there exists k ∈ Z
+ such

that Mk has all its positive entries. Then there exists a row vector π B(
π1 π2 . . . πn

)
with positive entries summing to one such that

M`
i,j = P[X`+1 = j | X1 = i], i, j ∈ S , ` ≥ 1

converges to πj as ` goes to infinity. That is,

lim
`→∞

M`
i,j = πj ,

for every i, j ∈ S . Moreover, π is the unique row vector such that
∑
j∈S πj = 1

and πM = π.

This theorem gives us an answer to the following question: How much time do
we need to wait until the Markov chain is close to the stationary distribution?
If we follow the proof of the theorem, we find that there exists A > 0 and
ε ∈ (0,1) such that

sup
i,j∈S
|M`

i,j −πj | ≤ A(1− ε)`; ` > 1.

This indicates how our Markov chain becomes close to the stationary distri-
bution in the long run. The problem is that A may be very big, and ε may be
close to zero, which means that the speed of convergence will be slow. As it
turns out, the decay of the distance to π is exponentially fast.

1.4 Expectation Rigorously

Remember that we can write expectation in terms of the corresponding prob-
ability measure P:

E[X] =
∫
Ω

X(ω)dP(ω) =
∫
XdP(ω) = E[X+]−E[X−],

for a random variable X : Ω → R ∪ {±∞}. Here x+ = max(x,0) and x− =
max(−x,0), for x ∈ R. This way we interpret the probability of a measurable
set A as a special case of expectation:

P[A] = E[1A(ω)] =
∫
Ω

1A(ω)dP(ω) = 1 ·P[A] + 0 ·P[Ac].

Then there are different forms of convergence for limits of random variables.

Definition 5 (Forms of Convergence). Assume that Xn(ω)
n→∞−→ X(ω) for

all ω ∈Ω (we can replace "all" by "almost sure").
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(a) (Monotone Convergence): If Xn(ω) ≥ 0 and Xn ≤ Xn+1(ω) for all n and
ω, then

lim
n→∞

E[Xn] = E[X].

(b) (Dominated Convergence): If there exists a random variable Y such
that |Xn(ω)| ≤ Y (ω) for all n and ω with E[|Y |] <∞, then

lim
n→∞

E[Xn] = E[X].

(c) (Bounded Convergence): In particular, if there exists c > 0 such that
|Xn(ω)| ≤ c for every n and ω, then

lim
n→∞

E[Xn] = E[X].

Proposition 3 (Fatou’s Lemma). If Xn, n ∈ N is a sequence of random vari-
ables such that Xn(ω) ≥ Y (ω) for all n and ω with E[|Y |] <∞, then

E

[
liminf
n→∞

Xn

]
≤ liminf

n→∞
E[Xn].

Since the converging sum can be written as an expectation of a random vari-
able, taking derivatives with respect to a parameter means taking limits. Thus
implicitly we have already used these limits of expectations.

Proposition 4 (Jensen’s Inequality). If u(·) is a convex function on R and X is
a random variable, then

E[u(X)] ≥ u(E[X]).



2Generating Functions

2.1 Introduction

Definition 6 (Generating Function). Let a = {an | n ∈ N0} be an infinite
sequence of numbers (real or complex) for which

Ga(s)B
∞∑
n=0

ans
n converges for some s ∈R.

We call Ga(·) the generating function of a.

We denote by S the family of such sequences. More precisely,

S = {a | Ga(s) is well defined for some s ∈R}.

We know that Ga(s) is a power series. Hence it has the following properties:

• There exists a radius of convergence R ≥ 0 such that Ga(s) converges if
|s| < R and diverges if |s| > R.

• Ga(s) is differentiable or integrable term-by-term with respect to s for
|s| < R.

• (Uniqueness): If Ga(s) = Gb(s) for some a,b for every |s| < R̃ ≤ R, then
a � b. Moreover,

an =
1
n!
∂n

∂sn
Ga(s)

∣∣∣∣∣
s=0

=
G(n)(0)
n!

; n ∈N.

• (Abel’s Theorem): If a ∈S is nonnegative, and Ga(s) <∞ for |s| < 1, then

lim
s→1

Ga(s) =
∞∑
n=0

an.

A canonical example of generating functions is the probability generating
function.
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Definition 7 (Probability Generating Function). Suppose that the sup-
port of a random variableX is a subset of N0 (discrete). Let an = P[X = n],
and n ∈N. We define the probability generating function (or p.g.f ) by

GX(s)B E[sX ] =
∞∑
n=0

snP[X = n]; s ∈ [0,1].

Because of the uniqueness of the generating function, the information of a
p.g.f. a ∈ S with an = P[X = n] of N0−valued random variable is encoded
into the generating function GX(·).

Definition 8 (Convolution). The convolution c B a ∗ b of two sequences
a,b ∈S is defined by

cn B
∞∑
k=0

akbn−k , n ∈N0.

We can associate two N0−valued independent random variables X and Y by

an = P[X = n], bn = P[Y = n].

Example 1. Let GX(·) be a p.g.f. of a N0−valued random variable X. Verify

(1) G(k)(1) = E[X(X − 1)(X − 2) · · · (X − k + 1)]. In particular, G′(1) = E[X].

(2) Var[X] = E[X2]− (E[X])2 = G′′(1) +G′(1)− ((G′(1))2.

Solution. (1) Let s < 1. We can calculate the kth derivative of G to get

G(k)(s) =
∑
i

si−ki(i − 1) · · · (i − k + 1)f (i) = E[sX−kX(X − 1) · · · (X − k + 1)].

Now we take s ↑ 1, and by Abel’s Theorem, we get

G(k)(s)→
∑
i

i(i − 1) · · · (i − k + 1)f (i) = E[X(X − 1) · · · (X − k + 1)].

(2) We have

Var[X] = E[(X −E[X])2]

= E[X2 − 2XE[X] + (E[X])2]

= E[X2]− 2E[X]E[X] + (E[X])2

= E[X2]− (E[X])2

= G′′(1) +G′(1)− (G′(1))2,
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because E[X2] = E[X(X − 1)] +E[X].

Example 2. Say we have a box that contains N balls (b black balls and N − b
white balls). We select n balls without replacement. The probability of getting
k black balls and n− k white balls is

f (k) =
(
N
n

)−1(
b
k

)(
N − b
n− k

)
, 0 ≤ k ≤min(n,b), 0 ≤ n− k ≤min(n,N − b),

and f (k) = 0, otherwise. This is the hypergeometric distribution. What is the
expectation and variance of the hypergeometric distribution from the p.g.f.?

Solution. First our

Definition 9 (Joint Probability Generating Function). The joint probabil-
ity generating function of two N0−valued random variables X1 and X2 by

GX1,X2
(s1, s2)B E[sX1

1 · s
X2
2 ]; s1, s2 ∈ [0,1].

Definition 10 (Moment Generating Function). Given a random variable
X, we call MX(t) B E[etX ] = GX(et) the moment generating function (or
m.g.f.) of X, if the expectation is finite for some t ∈R.

We can compute the m.g.f. from the p.g.f., and vice versa.

MX(t) =
∞∑
k=0

etkP[X = k] =
∞∑
k=0

∞∑
n=0

(tk)n

n!
ak

=
∞∑
n=0

∞∑
k=0

(tk)n

n!
ak

=
∞∑
n=0

tn

n!

 ∞∑
k=0

knak


=
∞∑
n=0

tn

n!
E[Xn]

= E

 ∞∑
n=0

tn

n!
Xn


= E[etX ]

= GX(et),
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if it is finite, and hence, if E[Xk] <∞ for some K ≥ 1, then because of the prop-
erty of the power series, we view MX(t) as a generating function of E[Xn]/n!,
and we have

∂k

∂tk
MX(t)

∣∣∣∣∣
t=0

= E[Xk]; k = 1,2, . . . ,K

The m.g.f. is not limited to the class of N0−valued random variables. How-
ever, there does arise a possible issue of m.g.f.s about the finiteness of E[|X |n]
for some n. We can deal with these heavy-tailed cases by considering the
Laplace transform for positive random variables.

As an example, consider a random variable X with P[X =∞] > 0. Then we
must be careful about the summation:

lim
s↑1

GX(s) =
∞∑
k=0

P[X = k] = 1−P[X =∞].

2.2 Applications of Generating Functions

Coin Flipping Game

Say that two players A and B play a game of flipping a coin many times with
probability of heads being p and probability of tails being q = 1 − p. Player
A wins if there are m heads appear before n tails appear, and Player B wins
otherwise. We want to compute

pm,n = P[A wins.

2.3 Simple Random Walks

We can try to understand random walks now under the lens of generating
functions to understand long-term behavior. For a simple random walk Sn =
X1 + · · ·+Xn, let us define two events:

An B {particle is at the origin after n steps, }
Bn B {the first return to the origin occurs exactly after n steps, }

for n ≥ 1. We want to find

p0(n) = P[Sn = 0] = P[An], n = 1,2, . . . , and p0(0) = 1,

f0(n) = P[S1 , 0, . . . ,Sn = 0] = P[Bn], n = 1,2, . . .

Recall that the first return time is defined as

T0 Bmin{n ≥ 1 | Sn = 0}.
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If we view these as sequences of numbers, then the generating function of
p0(·) and f0(·) are defined by

P0(s) =
∞∑
n=0

p0(n)sn, F0(s) =
∞∑
n=1

f0(n)sn = E[sT0 ], s ∈ (0,1).

We allow T0 to be defective, meaning that P[T0 =∞] = 1 − F0(1) > 0. In other
words, we do not have to have P[T0 = ∞] = 0 necessarily. We want to deter-
mine if this probability is strictly positive or not.

Proposition 5 (Return to the Origin). For the simple random walk we have

P0(s) =
1

4pqs2
, F0(s) = 1− 1

P0(s)
; s ∈ (0,1),

and

P[T0 <∞] =
∞∑
n=1

f0(n) = F0(1) = 1− 1
P0(1)

= 1− |p − q|.

In particular, we have P[T0 <∞] = F0(1) = 1, if and only if the random walk is
persistent (p = q = 1/2), and moreover in this case the simple random walk is
null-recurrent, i.e.,

E[T0] = F′0(1) =
∞∑
n=1

nf0(n) =∞.

Proof. First observe that A = An satisfies P[A | Bk] = p0(n− k) and hence

p0(n) = P[A] =
n∑
k=1

P[A∩Bk] =
n∑
k=1

P[A | Bk]P[Bk] =
n∑
k=1

p0(n− k)f0(k),

for n = 1,2, . . . Multiplying by sn, and summing over n = 0,1,2, . . . , we have

P0(s) =
∞∑
n=0

p0(n)sn = 1 +
∞∑
n=1

p0(n)sn

= 1 +
∞∑
n=1

n∑
k=1

p0(n− k)f0(k)sn

= 1 +
∞∑
n=1

∞∑
j=0

p0(j)sjf0(k)sk

= 1 + P0(s)F0(s); s ∈ (0,1).

Thus we obtain F0(s) = 1− (1/P0(s)) for s ∈ (0,1). Now we shall compute P0(·).
Note that p0(n) = 0 if n is odd and if n is even then the event An means that
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there are an equal numbers of steps to the left and right among n steps, or

p0(n) =
(
n
n/2

)
pn/2qn/2; n ≥ 2 (and n even).

Now we can use Newton’s generalized binomial expansion to find that

P0(s) =
∞∑
n=0

p0(n)sn =
∞∑
k=0

(
2k
k

)
(pq)ks2k

=
∞∑
k=0

(
(1/2) + k − 1

k

)
(4pqs2)k

=
1√

1− 4pqs2
; s ∈ (0,1).

Here we use the fact that(
x
n

)
B x(x − 1) · · · (x −n+ 1)/n!, x ∈R.

Note that pq = p(1− p) ≤ 1/4 for every p ∈ (0,1). Also by using q = 1− p and

|p − q|2 = |2p − 1|2 = 1 + 4p2 − 4p = 1− 4pq,

we obtain
F0(1) = 1− 1

P0(1)
= 1−

√
1− 4pq = 1− |p − q|.

Thus F0(1) = 1 is equivalent to p = q = 1/2. The expectation of T0 is computed
by direct differentiation of the generating function.

Note that if p > 1/2, then the particle tends to stray a long way to the right.
We can now generalize this to any level r as opposed to just 0.

Proposition 6. We have that

Fr (s)B
∞∑
n=1

fr (n)sn =

1−
√

1− 4pqs2

2qs

r ; s ∈ (0,1),

where fr (s) = P[S1 , r,S2 , r, . . . ,Sn = r] is the probability that the first visit of
level r occurs exactly at the nth step.

Proof. Observe that for 1 < r ∈N, to visit the level r, the particle must go to
the level 1 first in k steps, then go up by r − 1 levels in n − k steps for some
k = 1,2, . . . ,n− 1. This implies

fr (n) = P[S1 , r,S2 , r, . . . ,Sn−1 , r,Sn = r]
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=
n−1∑
k=1

P[S1 , r, . . . ,Sn−1 , r,Sn = r | T1 = k]P[T1 = k] =
n−1∑
k=1

fr−1(n− k)f1(k),

where Tk is the first passage time of level k = 1,2, . . . , i.e.

Tk = min{n | Sn = k}.

Note that fr (n) = 0 for n < r. Multiplying by sn and summing over n, we obtain

Fr (s) =
∞∑
n=1

fr (n)sn =
∞∑
n=1

n−1∑
k=1

fr−1(n− k)f1(k)sn

=
∞∑
k=1

 ∞∑
`=1

fr−1(`)s`
f1(k)sk

= Fr−1(s)F1(s),

for r > 1 and s ∈ (0,1). Iterating this relationship, we obtain

Fr (s) = [F1(s)]r ; r ∈N, s ∈ (0,1).

Now observe that f1(1) = P[S1 = 1] = p and that for n > 1,

f1(n) = P[T1 = n] = P[T1 = n | X1 = 1]P[X1 = 1] +P[T1 = n | X1 = −1]P[X1 = −1]

= P[T2 = n− 1]q

= qf2(n− 1),

as P[T1 = n | X1 = 1] = P[T1 = n | T1 = 1] = 0 for n ≥ 1. Using this relationship,
we derive a quadratic equation for F1(s):

F1(s) =
∞∑
n=1

snf1(n) = ps+
∞∑
n=2

snf1(n)

= ps+ qs
∞∑
n=2

sn−1f2(n− 1)

= ps+ qs
∞∑
`=1

s`f2(`)

= ps+ qsF2(s)

+ ps+ qs(F1(s))r .

We solve for F1(s) to get

F1(s) =
1±

√
1− 4pqs2

2qs
.
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Among the two solutions, the + solution cannot be a PGF, because as s ↓ 0, it
diverges to∞ but lims→0F1(s) = 0, if F1(·) is a PGF. Therefore combining with
the above relationship, we have

F1(s) =
1−

√
1− 4pqs2

2qs
, Fr (s) =

1−
√

1− 4pqs2

2qs

r ; s ∈ (0,1).

In particular, by taking r = 1 and letting s → 1 in the formula for F1(s), we
obtain a probability of attaining the level 1 sometime as

∞∑
n=1

f1(n) = F1(1) =
1−

√
1− 4pq
2q

=
1− |p − q|

2q
= min(1,p/q).

2.4 Nonsimple Random Walks

We now want to consider a random walk Sn = X1 + · · · +Xn, n ∈N where we
assume the values of Xi is in the integers.

Definition 11 (Right/Left Continuity). We say a random walk Sn = X1 +
· · ·Xn is right-continuous if P[Xi ≤ 1] = 1 and is left-continuous if P[Xi ≥
−1] = 1 for every i.

The simple random walk is both left and right continuous. After we gener-
alize it, does this still hold? The right-continuous random walk cannot jump
more than one level, and so for this random walk, the particle cannot skip the
milestones in the positive integer. In other words, if Sn = b for some n and
1 ≤ b ∈ N, there exists increasing random numbers k1, . . . , kb(= n), such that
Skr = r for every r = 1,2, . . . , b. For a right-continuous random walk we still
have

Fb(z) = (F1(z))b; b ≥ 1, z ∈C,

where Fb(z) =
∑∞
n=1 z

nfb(n) as defined before.

Proposition 7 (Hitting Time Theorem). For a right continuous random walk,
the hitting time Tb = min{n | Sn = b} satisfies

P[Tb = n] =
b
n
·P[Sn = b]; n ≥ 1, b ≥ 1.

To prove this, we need to make use of the following result from complex anal-
ysis:
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Proposition 8 (Lagrange Inversion Formula). Assume z = w/f (w) is an ana-
lytic function of w in a neighborhood of the origin. If g belongs to C∞, then

g(w(z)) = g(0) +
∞∑
n=1

zn

n!

[
dn−1

dun−1 [g ′(u)(f (u)]n
] ∣∣∣∣∣
u=0

.

Proof.

Proposition 9 (Spitzer’s Identity). For a right continuous random walk {Sn |
n ∈N0} the maximum Mn Bmax{Si | 0 ≤ i ≤ n} and Sn∨0 = max(Sn,0) = (Sn)+

satisfy the identity:

log

 ∞∑
n=0

tnE[uMn ]

 =
∞∑
n=1

tn

n
E

[
uSn∨0

]
; |t|, |u| < 1.

2.5 Branching Processes

When we study growth of a population of cells or increase of neurons in a
reactor or the spread of an epidemic, we may model the size of the population
as a branching process. We assume each individual in each generation gives
a random number of births. For a precise notation, let us write {Xn,i | i =
1,2, . . . } be the number of births of an individual i at the nth generation for
each n = 0,1,2, . . . We shall consider the total number Zn of individuals at the
nth generation for each n = 0,1,2, . . . , with Z0 = 1, Z1 = X0,1, and

Zn+1 B Xn,1 + · · ·+Xn,Zn =
Zn∑
i=1

Xn,i ; n ≥ 0.

Here we set Z0 = 1 for simplicity. We assume the family sizes form a collection
of independent random variables, and all family sizes have the common p.m.f.
f (·) with mean µ and corresponding generating function

G(x) =
∞∑
x=0

xjf (j) = E[xXn,i ] = E[xZ1 ] = G1(x); 0 ≤ x ≤ 1.

We define the p.g.f. Gn(x)B E[xZn ] of the nth generation size Zn for n ≥ 0.

Proposition 10. We have that

Gm+n(x) = Gm(Gn(x)), Gn(x) = G1(G1(· · · (G1(x) · · · )); 0 ≤ x ≤ 1, m,n ∈N.

In particular,
Gn+1(x) = Gn(G(x)).
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Proof. If we prove the Gn+1(x) = Gn(G(x)) case, then we can repeat the itera-
tion process to get the other expressions. Now for 0 ≤ x ≤ 1 and n ≥ 0,

Gn+1(x) = E[xZn+1 ]

= E

[
E

[
x
∑Zn
i=1Xn,j | Zn

]]
= E

 Zn∏
i=1

E[xXn,i | Zn]


= E

 Zn∏
i=1

xXn,i


= E

[
(G(x))Zn

]
= Gn(G(x)).

Proposition 11 (Probability of Extinction). The limiting probability η B

limn→∞P[Zn = 0] of extinction exists and is the smallest non-negative root
of the equation s = G(s) for 0 ≤ s ≤ 1. η = 1. If µ = 1 and Var[Z1] > 0, then
η = 1. If µ = 1 and Var[Zn] = 0, then η = 0.

Proof. Since {Zn = 0} ⊆ {Zn+1 = 0} for every n ≥ 1, we have

P[extinction] = P

 ∞⋃
n=0

{Zn = 0}

 = lim
n→∞

P[Zn = 0] = η ∈ [0,1]

exists. Since the p.g.f. G(·) is continuous, taking the limits of both sides of

P[Zn = 0] = Gn(0) = G(Gn−1(0)) = G(P[Zn−1 = 0]),

as n → ∞, we obtain η = G(η). Thus the limiting probability η is a non-
negative root of the equation s = G(s), for 0 ≤ s ≤ 1.

Suppose now that there exists a real number ψ ∈ [0,1] such that ψ = G(ψ).
Then since G(·) is a monotone increasing function,

P[Z1 = 0] = G(0) ≤ G(ψ) = ψ.

By induction, we claim that

P[Zn = 0] = G(P[Zn−1 = 0]) ≤ G(ψ) = ψ.

Thus taking the limits again, we claim

η = lim
n→∞

P[Zn = 0] ≤ ψ.
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This means that η is the smallest non-negative root of the equation. Note that

G′′(x) = E

[
Z1(Z1 − 1)xZ1−2 ·1{Z1≥2}

]
≥ 0; 0 ≤ x ≤ 1,

implies that G(·) is a convex function with G(1) = 1. By this convexity and
looking at the number of intersections between the curves y = G(x) and y =
G(x) for 0 ≤ x ≤ 1, we may conclude the proof.

When µ = E[Z1] > 1, the total population can explode quickly. How fast does
it grow? To answer this question, we consider some normalization. If E[Z1] >
1 and η < 1, define

Wn B
Zn

E[Zn]
=
Zn
µn

; n ≥ 0.

It follows from the expectation and variance of Zn, we have

E[Wn] = 1, Var[Wn] =
σ2(1−µ−n)
µ2 −µ

n→∞−→ σ2

µ2 −µ
.

2.6 Characteristic Functions

Definition 12 (Characteristic Function). We define the characteristic func-
tion of some random variable X as

ϕX(t)B E[eitX ]; t ∈R.

We can extend this definition of these functions for random vectors; e.g.,

ϕX,Y (s, t) = E[eisX+itY ]; (s, t) ∈R2.

We understand the expectation of complex-valued random variables as

ϕX(t) = E[eitX ] =
∫
Ω

cos(tX(ω))dP(ω) + i
∫
Ω

sin(tX(ω))dP(ω); t ∈R.

Both the MGF and the characteristic function generate moments by differen-
tiation under integration: for example,

ϕ
(k)
X (0) =

∂k

∂tk
ϕX(t)

∣∣∣∣∣
t=0

= E

[
∂k

∂tk
eitX

] ∣∣∣∣∣
t=0

= ikE[Xk]; k ∈N.

However, we need to justify this interchange between differentiation and inte-
gration, and the characteristic function behaves better than the MGF because
of the following theorem.
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Proposition 12 (Bochner’s Theorem). The characteristic function satisfies

(a) ϕ(0) = 1, |ϕ(t)| ≤ 1 for every t ∈R,

(b) t 7→ ϕ(t) is uniformly continuous, and

(c) ϕ(·) is nonnegative definite, i.e., for every n and (t1, . . . , tn) ∈ R
n and

(z1, . . . , zn) ∈Cn,
n∑

j,k=1

ϕ(tj − tk)zjzk ≥ 0.

Since the MGF is equivalent to the Laplace transform, it is quite useful for
nonnegative random variables, as we have versatile tools from the inverse
Laplace transform at our disposal.

Proposition 13. For any fixed a > 0, the following three statements are equiv-
alent:

(a) |M(t)| <∞ for |t| < a,

(b) ϕ(·) is analytic on the strip |=(z)| < a,

(c) The moments mk = E[Xk] exist for k = 1,2, . . . and satisfy

limsup
k→∞

(
|mk |
k

)1/k

≤ 1
a
.

If one of them holds for a > 0, then the power series expansion for M(·) may
be extended analytically to the strip |=(t)| < a and hence, ϕ(t) =M(it).

Just like for MGFs, for independent random variables X and Y ,

ϕX+Y (t) = E[eit(X+Y )] = E[eitX ] ·E[eitY ] = ϕX(t)ϕY (t); t ∈R,

ϕX,Y (s, t) = E[eisX+itY ] = ϕX(s)ϕY (t); (s, t) ∈R2.

Example 3 (Characteristic Function of Normal Distribution). When we com-
pute the characteristic function of the standard normal N (0,1), we may not
substitute s = it into the MGF

MX(s) = E[esX ] =
∫
R

esx · e
−x2/2
√

2π
dx =

∫
R

es
2/2 · e

−(x−s)2/2
√

2π
dx = e−s

2/2; s ∈R

without some justification. The justification here is that MX(·) is bounded,
and so MX(·) may be extended analytically to the characteristic function by
the theorem. If Y = aX + b with a,b ∈R, then

ϕY (t) = E[eit(aX+b)] = eitbE[ei(ta)X ] = eitbϕX(at); t ∈R.
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Applying this relation to the standard normal random variable X with mean 0
and variance 1, we obtain the characteristic function of Y = σX+µ with σ > 0,
u ∈R, i.e.,

ϕX(t) =
∫
R

eitx
e−x

2/2
√

2π
dx = e−t

2/2, ϕY (t) = eitµ−(σ2t2/2); t ∈R.

Example 4 (Exp, Chi-Square, and Gamma Distributions). The exponential,
chi-square, and gamma distributions are in the same family. The characteris-
tic function of the gamma distribution Γ (λ,s) is defined by the PDF

fX(x) =
λ2xs−1e−λx

Γ (s)
; x > 0

is given by

ϕX(t) =
∫ ∞

0
eitx

λ2xs−1e−λx

Γ (s)
dx =

(
λ

λ− it

)s
; t ∈R.

When s = 1, it is the exponential distribution with parameter λ. When s =
d/2 and λ = 1/2, it is the centered chi-square distribution with d degrees of
freedom.

Example 5 (Cauchy Distribution). We can directly calculate the characteris-
tic function of the Cauchy distribution through contour integration and the
residue theorem:

ϕX(t) =
∫
R

eitx
1

π(1 + x2)
dx = e−|t|; t ∈R.

We can check it from the Fourier transform of e−|t|.

The name characteristic function comes from the unique characterization
of distribution, i.e.,

P[X ∈ A] = P[Y ∈ A] for every set A ∈ B.

⇐⇒ E[eitX ] = ϕX(·) ≡ ϕY (·) = E[eitY ]; t ∈R,

where B = σ (R) is the smallest Borel sigma field generated by open sets in the
real line. Thus in order to find out the characteristic function of a new random
variable Y , find out the characteristic function of Y and compare it to that ofX
to connect to a known random variableX. Because of the relationship between
the MGF and characteristic function, this method of finding the distribution
of new random variable Y for the MGF and the PGF is used for non-negative
random variables and for discrete random variables.

In general, we have to take account for the discontinuity of distribution
functions. Here is the main inversion theorem.
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Proposition 14 (Inversion Theorem). The characteristic function ϕ(·) and the
cumulative distribution function F(·) of random variable X satisfy

P[a < X < b] +
1
2

(P[X = a] +P[X = b]) = F(b)−F(a)

= lim
N→∞

∫ N

−N

e−iat − e−ibt

2πit
ϕ(t)dt; a,b ∈R,

where for x ∈R,

F(x)B
1
2

(F(x) + lim
y↑x

F(y)) =
1
2

(P[X ≤ x] +P[X < x]) = P[X ≤ x]− 1
2
P[X = x].

Proof. Let us recall the following integrals from calculus:∫ ∞
0

sinx
x

dx =
∫ ∞

0
sinx

[∫ ∞
0
e−xu du

]
dx =

∫ ∞
0

[∫ ∞
0
e−xu sinxdx

]
du =

∫ ∞
0

du

1 +u2 =
π
2
,

and hence, for every α ∈R we have∫ ∞
0

sinαx
x

dx =
π
2
· sgn(α) =

π
2
· (−1{α<0} +1{α>0}).

Then using this integration result, for every a,b ∈ R and N ∈N, we may eval-
uate the integral

I(N,a,b) =
∫ N

−N

e−iat − e−ibt

2πit
ϕ(t)dt =

∫ ∞
−∞

[∫ N

−N

eit(x−a) − eit(x−b)

2πit

]
dt dF(x)

=
∫
R

(
1
π

∫ N

0

sin(t(x − a))
t

dt − 1
π

∫ N

0

sin(t(x − b))
t

dt

)
dF(x) =

∫
R

(I1 − I2)dF(x),

where we use Fubini’s Theorem to interchange the order of integration, since
the integrand is bounded uniformly by |a − b| for t ∈ [−N,N ] and x ∈ R. As
N →∞, the terms I1, I2 and I converge as in the table:

x limN→∞ I1 limN→∞ I2 limN→∞(I1 − I2)
x < a −1/2 −1/2 0
x = a 0 −1/2 1/2

a < x < b 1/2 −1/2 1
x = b 1/2 0 1/2
x > b 1/2 1/2 0

Therefore we conclude that the inversion formula

lim
N→∞

I(N,a,b) = P[a < X < b] +
1
2

(P[X = a] +P[X = b]); a,b ∈R.
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It follows from the right continuity of cumulative distribution function that
two random variables X and Y have the same characteristic function if and
only if they have the same distribution. Indeed, it is simple that if X and
Y have the same cumulative distribution function, then they have the same
characteristic function; on the other hand, if ϕX(·) ≡ ϕY (·), then the inversion
theorem implies

FX(b) = lim
a→−∞

(FX(b)−FX(a)) = lim
a→−∞

(FY (b)−FY (a)) = FY (b); b ∈R.

Then FX(x) = FY (x) for every continuity point x ∈ (JX ∪JY )c, where

JX B {x ∈R | FX(x)−FX(x−) > 0}, JY B {x ∈R | FY (x)−FY (x−) > 0},

is an at most countable set of jump points of FX(·) and FY (·). This implies X
and Y have the same distribution.

Another application of the inversion theorem is about the PDF. Take b = x
and a = x − h for h > 0 and observe that at the continuity points x and x − h of
F(·),

1
h

(F(x)−F(x−h)) =
F(x)−F(x−)

2
−F(x − h)−F(x − h−)

2
=

1
2π

∫
R

eith − 1
it
·e−itxϕ(t)dt

for x ∈ R. If
∫
R
|ϕ(t)|dt <∞, then by the dominated convergence theorem, the

left-derivative of F(·) at x exists, i.e.,

lim
h↓0

1
h

(F(x)−F(x − h)) =
1

2π

∫ ∞
−∞
e−itxϕ(t)dt.

Similarly, we can work with right-derivatives.

Proposition 15. The probability density function f (·) and characteristic func-
tion ϕ(·) of a random variable satisfy

f (x) =
1

2π

∫
R

e−itxϕ(t)dt

at every point x at which f (·) is differentiable.

Definition 13 (Convergence in Distribution). Suppose that a sequence
Fn(·), n ≥ 1 of cumulative distribution functions converges to a CDF F(·)
at every continuity point x of F(·). Then we say that Fn converges in dis-

tribution to F and we write Fn
d−→ F as n→∞. If X1,X2, . . . is a sequence

of random variables with CDF F1,F2, . . . , we say Xn
d−→ X if Fn

d−→ F as
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n→∞.

Proposition 16 (Continuity Theorem). Suppose {Fn(·),n ≥ 1} is a sequence
of distribution functions with the corresponding characteristic functions
{ϕn(·),n ≥ 1}.

(a) If Fn
d−→ F as n→∞ for some distribution function F with characteristic

function ϕ, then ϕ(t) = limn→∞ϕn(t) for every t ∈R.

(b) Conversely, if limn→∞ϕn(t) = ϕ(t) exists and is continuous at t = 0, then
ϕ(·) is a characteristic function of some distribution function F(·) and

Fn
d−→ F.

2.7 Limit Theorems

Proposition 17. If X has a finite absolute moment of order k for some integer
k ≥ 1, then the characteristic function ϕ(·) of X has the following expansion
in the neighborhood of t = 0:

ϕ(t) =
k∑
j=0

(it)j

j!
E[Xj ] + o(|t|k) =

k−1∑
j=0

(it)j

j!
E[Xj ] +

θk
k!

E[|X |k]|t|k ,

where θk is a constant with |θk | ≤ 1.

Proof. We only prove the k = 1 case. We apply the dominated convergence
theorem to

(ϕ(t + h)−ϕ(t))/h =
∫ ∞
−∞

(ei(t+h)x − eitx)/hdF(x),

where the integrand is dominated by |x|, i.e.

sup
t∈R

∣∣∣∣∣∣ei(t+h)x − eitx

h

∣∣∣∣∣∣ ≤ |x|; x ∈R.

Thus if E[|X |] <∞, then

lim
h→0

ϕ(t + h)−ϕ(t)
h

= lim
h→0

∫ ∞
−∞

ei(t+h)x − eitx

h
dF(x)

=
∫ ∞
−∞

lim
h→0

ei(t+h)x − eitx

h
dF(x)

=
∫ ∞
−∞

(ix)eitx dF(x).
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Thus we have ϕ(0) = 1 and ϕ′(t) = iE[XeitX ]. Since ϕ(·) has a finite first
derivative at the point t = 0, then we have the Taylor expansion

ϕ(t) = ϕ(0) +ϕ′(0)t + o(|t|) = 1 +E[X]t + o(|t|).

Since ϕ(·) has a finite first derivative in the neighborhood of t = 0, then

ϕ(t) = ϕ(0) +ϕ′(θt)t = 1 +E[iXeiθX ]t = 1 +θ1E[|X |]|t|; |θ| ≤ 1,

where

θ1 B
E[iXeiθX ]t
(E[|X |]|t|)

, |θ1| ≤ 1.

Proposition 18 (Weak Law of Large Numbers). Let X1,X2, . . . be indepen-
dently, identically distributed random variables with finite means µ. Then

Sn
n

d−→ µ, n→∞.

Proof. Computing the characteristic function ϕ(t) = E[eitX1 ] and expanding
around t = 0,

ϕ(t/n) = E[eitX1/n] = ϕ(0) +
t
n
ϕ′(0) + o

(
t
n

)
= 1 +

itµ

n
+ o

( t
n

)
.

Thus we conclude that

ϕn(t) = E[eitSn/n] = E

 n∏
i=1

eitX1

 = (E[eitX1 ])n =
(
1 +

iµt

n
+ o

( t
n

))n
−→
n→∞

eiµt ; t ∈R.

The right hand side is the characteristic function of a constant random vari-
able µ.

Proposition 19 (Central Limit Theorem). Let X1,X2, . . . be a sequence of in-
dependently, identically distributed random variables with finite second mo-
ments E[Xi] = µ and Var[Xi] = σ2 > 0 for every i. Let us define Y B (Xi −µ)/σ
for every i. Then the scaled sample averages

√
nY n B (Y1 + · · · + Yn)/

√
n con-

verge to the standard normal distribution, i.e.,

√
nY n =

(X1 + · · ·+Xn)−nµ
√
nσ2

=
Sn −nµ√
nσ2

d−→ X, n→∞,

where X ∼N (0,1). In terms of probability,

lim
n→∞

P

[√
nY n ≤ x

]
=

∫ x

−∞

e−u
2/2

√
2π

= Φ(x); x ∈R.



CHAPTER 2. GENERATING FUNCTIONS 28

Proof. We employ the same strategy as above. We compute the characteristic
functions of Y1 and of

√
nY n:

ϕY1
(t/
√
n) = E[ei(t/

√
n)Y1 ] = ϕY1

(0)+
t
√
n
·ϕ′Y1

(0)+
1
2
· t

2

n
·ϕ′′Y1

(0)+o
(
t2

n

)
= 1− t

2

2n
+o

(
t2

n

)
,

and hence we claim that

E[eit
√
nY n ] = (E[ei(t/

√
n)Y1 )n =

(
1− t

2

2n
+ o

(
t2

n

))n
n→∞−→ e−t

2/2; t ∈R.

For the IID random variables {Xn,n ≥ 0} and the cumulative sum Sn = X0 +
· · · +Xn with finite mean E[X1] = 0, let us define the expected number Vi of
visits by the random walk Sn at site i and first passage time Ti at site i:

Vi B E

 ∞∑
n=0

1Sn=i

 =
∞∑
n=0

P[Sn = i], Ti = min{n | Sn = i}, i ∈Z.

We presume that Ti =∞ if there is no such n such that Sn = i. Note that P[Sn =
i | Ti = t] = 0 if n < t. Also because of the IID property and the definition of Ti ,
we have

P[Sm+t = i | Ti = t] = P[Sm = 0].

The law of large numbers says that for every ε > 0,

lim
n→∞

P[|Sn| ≤ nε] = 1,

and hence it follows from the definition of limits that there exist m such that
P[|Sn| ≤ nε] ≥ 1

2 for every n ≥ m. Thus for every K > 0 with m ≤ n and nε ≤ K
we have

P[|Sn| ≤ K] ≥ P[|Sn| ≤ nε] ≥ 1
2
.

This gives us an important application to random walks using our limit theo-
rems.

Proposition 20. The random walk {Sn,n ≥ 0} is persistent (or recurrent), i.e.,

P[Sn = 0 for some n ≥ 1] = 1,

if the mean step size is zero.



3Discrete-Time Markov Chains

3.1 Some Review

Let’s recall some basic definitions and properties of Markov chains.

Definition 14 (Markov Chain). Let us take a countable set S and consider
a sequence X B {X0,X1, . . . } of S−valued random variables which satisfies
the Markov property:

P[Xn = s | X0 = x0, . . . ,Xn−1 = xn−1] = P[Xn = s | Xn−1 = xn−1]

for every s,x0, . . . ,xn−1 ∈ S and for every n ≥ 1. Then we call X a Markov
chain.

Let’s check that this Markov property is equivalent to

P[Xn+1 = s | Xn1
= xn1

, . . . ,Xnk = xnk ] = P[Xn+1 = s | Xnk = xnk ]

for every s,xn1
, . . . ,xnk ∈ S and for every 0 ≤ n1 < n2 < · · · < nk ≤ n. Indeed,

taking n1 = 0 < n2 = 1 < · · · < nk = n implies the Markov property with n being
replaced by n+ 1. Conversely, we see that

P[X4 = x4 | X1 = x1,X3 = x3] =
P[X4 = x4,X3 = x3,X1 = x1]

P[X1 = x1,X3 = x3]
= P[X4 = x4 | X3 = x3].

Indeed we can verify that

P[X4 = x4,X3 = x3,X1 = x1] =
∑

(x0,x2)∈S2

P[X4 = x4,X3 = x3,X2 = x2,X1 = x1,X0 = x0]

=
∑

(x0,x2)∈S2

P[X4 = x4 | X3,X2,X1,X0] ·P[X3,X2,X1,X0]

=
∑

(x0,x2)∈S2

P[X4 | X3] ·P[X3,X2,X1,X0]

= P[X4 | X3]
∑

(x0,x2)∈S2

P[X3,X2,X1,X0]

= P[X4 | X3] ·P[X1,X3].
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This is the specific case of n = 3, n1 = 1, n2 = 3, but we can similarly verify
with additional indices that this holds in the general case.

Definition 15 (Time-Homogeneous Chain). We say a Markov chain X is
time-homogeneous if

P[Xn+1 = j | Xn = i] = P[X1 = j | X0 = i] = pi,j

for every n, i, j ∈ S . We call the matrix P = (pi,j )(i,j)∈S2 the transition prob-
ability matrix. Note that pi,j ≥ 0 and

∑
j∈S pi,j = 1 for every i ∈ S .

Definition 16 (n−step Transition Probability). The n-step transition prob-
ability of a Markov chain is defined by

pi,j (m,m+n) = P[Xm+n = j | Xm = i]

for every m,n ≥ 0, i, j ∈ S . We write the matrix P(m,m+n) = pi,j (m,m+n),
i, j ∈ S . If it is homogeneous, we have the probability of going from state
i to state j in n steps

pi,j (m,m+n) = P[Xn = j | X0 = i]

for i, j ∈ S and m,n ≥ 0.

By the Markov property and conditional probability, we can obtain an impor-
tant fact.

Proposition 21 (Chapman-Kolmogorov Equations).

pi,j (m,m+n+ r) =
∑
k

pi,k(m,m+n)pk,j (m+n,m+n+ r).

Therefore, P(m,m+n+ r) = P(m,m+n)P(m+n,m+n+ r) and P(m,m+n) = Pn.

Proof. We have

pi,j (m,m+n− r) =
∑
k∈S

P[Xn+m+r = j,Xn+m = k | Xm = i]

=
∑
k∈S

P[Xn+m+r = j | Xn+m = k,Xm = i] ·P[Xn+m = k | Xm = i]

=
∑
k∈S

P[Xn+m+r = j | Xn+m = k] ·P[Xn+m = k | Xn = i]

=
∑
k∈S

pk,j (n+m,n+m+ r) · pi,k(m,m+n)
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for every n,m,r ≥ 0 and i, j ∈ S . In matrix form, we write this as

P(m,m+n+ r) = P(m,m+n)P(m+n,m+n+ r),

and in the time-homoegeneous case we have P(m,m+n) = Pn.

As a corollary, the marginal probability µ(n) B (µ(n)
i B P[Xn = i], i ∈ S) satisfies

µ(m+n) = µ(m)Pn; µ(n) = µ(0)Pn; m,n ≥ 0.

This is an important conclusion that the random evolution of the chain is
determined by the transition matrix P and the initial mass function µ(0).

Example 6 (Simple Random Walk). The simple random walk in Z with prob-
abilities (p,q) of going to the left or right is a Markov chain on S = Z with
transition probability

pi,j (n)B pi,j (m,m+n) =
(

n
1
2 (n+ j − 1)

)
p(n+j−i)/2q(n−j+i)/2

if n+ j − i is even and zero otherwise, for m,n ≥ 0 and i, j ∈Z.

Example 7 (Branching Process). The branching process Zn is a Markov chain
on S = N0 with pi,j = P[Zn+1 = j | Zn = i] being the coefficient of sj in

(G(s))i = E[sX1,1+···+X1,i ]

for every i, j ∈ N0 where Xn,k are IID random variables distributed in the
offspring distribution, and G(·) is the generating function of the offspring dis-
tribution.

When we describe a stochastic process in an open system where some ex-
ternal effects or forces come into the system, the process itself may not be a
Markov process. When this happens, we can enlarge the state space by in-
cluding the external effects into our consideration.

Here is an artificial example due to Markov himself. Let Y1,Y3,Y5, . . . be a
sequence of IID random variable such that

P[Y2k+1 = −1] = P[Y2k+1 = 1] =
1
2
, k = 0,1,2, . . . ,

and we define Y2k = Y2k−1Y2k+1 for k = 1,2, . . . For example, if Y1 = 1, Y3 = 1,
Y5 = −1, Y7 = 1, then Y2 = 1, Y4 = −1, and Y6 = −1. Now E[Y2kY2k+1] =
E[Y2k−1Y

2
2k+1] = E[Y2k−1] = 0, and so the sequence Y1,Y2, . . . is pairwise in-

dependent. Hence pi,j (n) = 1
2 for all n and i, j = ±1, and it follows that the

Chapman-Kolmogorov are satisfied. However, {Yk , k ∈N} is not Markov:

P[Y2k+1 = 1 | Y2k = −1] =
1
2
, P[Y2k+1 = 1 | Y2k = −1,Y2k−1 = 1] = 0.
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Thus the Chapman-Kolmogorov equations are necessary for the Markov prop-
erty, but not sufficient, for the same reason that pairwise independence is
weaker than independence. Although Yn is not a Markov chain, we can de-
fine a new process Zn B (Yn,Yn+1) in S = {±1}2. Zn is a Markov chain with
time-inhomogeneous transition probabilities, e.g.

P[Zn+1 = (1,1) | Zn = (1,1)] =

1/2, n is even

1, n is odd

P[Zn+1 = (−1,−1) | Zn = (1,−1)] =

1/2, n is even

1, n is odd

3.2 Classification of States

Recall how we analyzed the simple random walk, where we used generating
functions to find out the probability distribution of the first passage time.
With a similar spirit, for a homogeneous Markov chain in the countable state
space S , focusing on state j ∈ S , let us define the sets

Am B {Xm = j}, Bm B {Xr , j,1 ≤ r ≤m,Xm = j}; m ≥ 1,

and the probability that the first visit to state j, starting from state i takes
place at the nth step

fi,j (n)B P[Bn | X0 = i] = P[Xr , j,1 ≤ r ≤ n− 1,Xn = j | X0 = i], i, j ∈ S , n ≥ 1,

and the probability of visiting state j, starting from state i,

fi,j B P[Xn = j for some n ≥ 1 | X0 = i]; i, j ∈ S .

Definition 17 (Recurrent/Transient State). We say that a state i ∈ S is
called recurrent (or persistent), if fi,i = 1. Otherwise, state i is called tran-
sient.
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Observe by the Markov property and conditional probability that

pi,j (m) = P[Am | X0 = i] =
m∑
r=1

P[Am ∩Br | X0 = i]

=
m∑
r=1

P[Am | Br ,X0 = i] ·P[Br | X0 = i]

=
m∑
r=1

P[Am | Xr = j] ·P[Br | X0 = i]

=
m∑
r=1

fi,j (r)Pj,j (m− r),

and hence we obtained a relationship between the generating functionsPi,j (s)B∑∞
n=1 s

npi,j (n) and Fi,j (s) B
∑∞
n=0 s

nfi,j (n) with pi,j (0) = δi,j = 1i=j , and with
fi,j (0) = 0:

Pi,j (s) = δi,j +
∞∑
m=1

sm
m∑
r=1

fi,j (r)Pj,j (m− r) = δi,j +Fi,j (s)Pj,j (s); i, j ∈ S

for |s| < 1. This implies that for every persistent j ∈ S , by Abel’s Theorem,

Fj,j (1) = fj,j = 1⇐⇒Pj,j (s) =
1

1−Fj,j (s)
−→
s↑1
∞ =

∞∑
n=0

pj,j (n).

This implies that

lim
s↑1
Pi,j (s) =

∞∑
n=0

pi,j (n) = Fi,j (1)Pj,j (1) <∞; i ∈ S .

For the transient state j ∈ S , i.e., fj,j < 1 if and only if
∑∞
n=0pj,j (n) < ∞ holds

and

lim
s↑1
Pi,j (s) =

∞∑
n=0

pi,j (n) = Fi,j (1)Pj,j (1) <∞.

In particular, if j is transient, then limn→∞pi,j (n) = 0 for every i ∈ S .

Definition 18 (Positive/Null-Recurrence). Let Tj B min{n ≥ 1 | Xn = j}.
For the mean recurrence time we have

µi B E[Ti | X0 = i] =


∑∞
n=0nfi,i(n), if i is recurrent

∞, if i is transient

State i ∈ S is null recurrent (or null persistent) if µi =∞ (by interpreting
1/µi = 0); state i is positive recurrent (or positive persistent) if µi <∞ (by



CHAPTER 3. DISCRETE-TIME MARKOV CHAINS 34

interpreting 1/µi > 0).

Recall the renewal theorem: the limiting probability is the reciprocal of the
mean recurrence time. In this sense we see the connection between the re-
newal theorem and the definition of null/positive recurrence.

Proposition 22. State i ∈ S is null recurrent if and only if limn→∞pi,i(n) = 0.
If it is the case, limn→∞pj,i(n) = 0 for every j ∈ S .

Definition 19 (Periodicity). The period d(i) of a state i is defined by
gcd{n | pi,i > 0} of the times at which return to the state i is possible.
pi,i(n) = 0 unless n is a multiple of d(i). We call the state i periodic if
d(i) > 1 and aperiodic if d(i) = 1.

A particular type of state gets a special name.

Definition 20 (Ergodic State). We call a state i ∈ S ergodic if it is persis-
tent, non-null recurrent, and aperiodic.

3.3 Classification of Chains

Definition 21 (Communication). We say a state i ∈ S communicates with
j ∈ S , if there exists m ≥ 0 such that pi,j (m) > 0, and we write i → j. If
i→ j and j→ i, we say i and j intercommunicate, and write i↔ j.

Let’s investigate some properties of communication.

• Recalling the definition of fi,j B
∑∞
n=1 fi,j (n). Thus i → j if and only if

fi,j > 0.

• If i ↔ and j ↔ k, then there exist m and n such that pi,j (m) > 0 and
pj,k(n) > 0. Thus by the Chapman-Kolmogorov equation,

pi,k(m+n) = P[Xm+n = k | X0 = i]

≥ P[Xm+n = k,Xm = j | X0 = i]

= P[Xm+n = k | Xm = j,X0 = i] ·P[Xm = j | X0 = i]

= pi,j (m)pj,k(n) > 0,

that is, i → k. Similarly, we can show that k→ i. Thus i ↔ j and j ↔ k
imply i↔ k for every i, j,k ∈ S .
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• Suppose i↔ j for some i, j ∈ S . Then there exist some integers k1 and k2
such that pi,j (k1) > 0 and pj,i(k2) > 0, and in particular, by the Chapman-
Kolmogorov equation, pi,i(k1 + k2) > 0 and pj,j (k1 + k2) > 0. Then by
definition of the periods d(i) = gcd(m | pi,i(m) > 0) and d(j) = gcd(m |
pj,j (m) > 0) of state i and state j respectively, we claim that k1 + k2 = 0
modulo d(i) and k1 + k2 ≡ 0 mod d(j). For every m ∈N with pi,i(m) > 0,

pj,j (m+ k1 + k2) ≥ pi,j (k2)pi,i(m)pi,j (k1) > 0,

and hence {m | pi,i(m)} ⊆ {m | pj,j (m+ k1 + k2) > 0}. Combining this obser-
vation with the definition of d(j) and k1 + k2 ≡ 0 mod d(j), we see

d(i) = gcd(m | pi,i(m) > 0) ≥ gcd(m | pj,j (m+ k1 + k2)) > 0} = d(j).

By interchanging the roles of i and j, we can get d(i) ≤ d(j), and so if
i↔ j, then d(i) = d(j).

• Similarly, if i ↔ j, then there exist k1 and k2 such that pi,j (k1) > 0 and
pj,i(k2) > 0. This implies that for every r ≥ 0

pi,i(k1 + k2 + r) ≥ pi,j (k1) · pj,j (r) · pj,i(k2) = αpj,j (r).

Summing over r, we have

∞∑
r=1

pi,i(r) <∞ =⇒
∞∑
r=1

pj,j (r) ≤
m+n+r−1∑
r=1

pj,j (r) +α
∞∑

r=m+n+r

pi,i(r) <∞.

In other words, if i is transient, then j is transient. Interchanging the
roles of i and j, we can get that if j is transient, then i is transient. Thus
under the condition i↔ j of communication, i is transient if and only if
j is transient.

Proposition 23. If i↔ j for some i, j ∈ S , then their periods are the same; that
is, d(i) = d(j). If, in addition, i is transient, then so is j.

Later on, we shall see that if i ↔ j, then i is null persistent if and only if j is
null persistent. Since pi,i(0) = 1, the relation i ↔ j is an equivalence relation,
and the state space S can be partitioned into the equivalence classes of ↔.
Within each equivalence class, all states are of the same type.

Definition 22 (Irreducible and Closed Sets). We say a subset C ⊆ S is
irreducible if every pair i, j ∈ C of states in C intercommunicate, i.e. i↔ j.
We say a subset C ⊆ S is closed if pi,j = 0 for every i ∈ C and j < C. We
call a set C aperiodic, persistent, null respectively, if every state i ∈ C is
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aperiodic, persistent, and null respectively.

Let Cj , j = 1,2, . . . be persistent equivalence classes of relation↔ in the state
space S . If there exists a non-closed set Cr for some r, then there exist i ∈ Cr
and j < Cr such that pi,j > 0 but then since j < Cr means j 6→ i, we have a
contradiction

P[Xn , i for all n ≥ 1 | X0 = 1] ≥ P[X1 = j | X0 = i] = pi,j > 0

to that i is in the persistent set. Thus we have the following:

Proposition 24 (Decomposition of State Space). The countable state space S is
decomposed into the disjoint union of transient set T and irreducible, closed
sets Ci , i ∈N of persistent states, that is,

S = T ∪
(⋃

i

Ci

)
.

Particularly, if the state space S is finite and if all the states j ∈ S were tran-
sient, then for every i ∈ S , limn→∞pi,j (n) = 0, and hence, it would be a contra-
diction:

0 = lim
n→∞

∑
j∈S

pi,j (n) = 1.

This means at least one state is persistent. Moreover, if a persistent state i ∈
S of such finite state space S were null persistent, then limn→∞pi,i(n) and
limn→∞pj,i(n) = 0 for every j ∈ S , and thus it would be another contradiction:
for the closed, persistent equivalence class to which state i belongs, and for
every k ∈ Ci ⊆ S , i↔ k and k is null-persistent, and so

0 = lim
n→∞

∑
k∈Ci

pi,k(n) = 1.

Thus as a corollary, we have the following proposition:

Proposition 25. If the state space S is finite, then at least one state is persis-
tent and all the persistent state is non-null.

Proposition 26. For an irreducible and aperiodic Markov chain {Xn,n ≥ 0},

lim
n→∞

pi,j (n) = lim
n→∞

P[Xn = j | X0 = i] =
1
µj
, i, j ∈ S ,

where µj is the mean recurrence time.
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Proof. Let us assume that the Markov chain {Xn,n ≥ 0} is irreducible and ape-
riodic with transition probability matrix P. We employ a coupling technique:
take an independent Markov chain {Yn,n ≥ 0} with the same transition prob-
ability matrix P. Then the coupled Markov chain Z B (Zn B (Xn,Yn),n ≥ 0)
with transition probability

p(i,j),(k,`) = P[Zn+1 = (k,`) | Zn = (i, j)] = P[Xn+1 = k,Yn+1 = ` | Xn = i,Yn = j]

= P[Xn+1 = k | Xn = i] ·P[Yn+1 = ` | Yn = j] = pi,kpj,` , i, j,k,` ∈ S .

Since X is irreducible and aperiodic, there existsN0 such that pi,k(n)pj,`(n) > 0
for every n ≥N0. This implies Z is irreducible.

• Case: Transient. We have already proved the transient case.

• Case: Positive recurrent. Let us assume that the Markov chain Xn is
irreducible, aperiodic, and positive recurrent with transition matrix P.
Since X is positive recurrent and irreducible, the stationary distribution
π B (πi , i ∈ S) exists and so νi,j B πiπj , i, j ∈ S is a stationary distribu-
tion of Z and Z is also positive recurrent. Recall πk = 1/µk , k ∈ S .

Fix i, j, s ∈ S . Assume X0 = i, Y0 = j, and define T = min{n ≥ 1 | Zn =
(s, s)}. Since Z is positive recurrent, P[T < ∞ | Z0 = (i, j)] = 1. Cond-
tionally on {n ≥ T }, Xm and Ym for m ≥ n have the same distribution,
independent of the initial points (i, j):

pi,k(n) = P[Xn = k | X0 = i]

= P[Xn = k,T ≤ n | X0 = i] +P[Xn = k,T > n | X0 = i]

= P[Yn = k,T ≤ n | Y0 = j] +P[Xn = k,T > n | X0 = i]

≤ P[Yn = k | Y0 = j] +P[T > n | X0 = i]

= pj,k(n) +P[T > n | Z0 = (i, j)].

Interchanging the roles of (i, j), we obtain that for every i, j,k ∈ S ,

|pi,k(n)− pj,k(n)| ≤ P[T > n | Z0 = (i, j)]
n→∞−→ 0.

This implies that for every finite subset F ⊂ S ,

∑
i∈S

πi |pi,k(n)− pj,k(n)| =

∑
i∈F

+
∑
i∈Fc

 |pi,k(n)− pj,k(n)|

≤
∑
i∈F
|pi,k(n)− pj,k(n)|+ 2

∑
i∈Fc

πk

=⇒ n→∞−→ 2
∑
i∈Fc

πi ,
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and then letting F ↑ S , the limit in the right must be 0. Thus for every
j,k ∈ S , we obtain

|πk − pj,k(n)| =

∣∣∣∣∣∣∣∑i∈S πi(pi,k(n)− pj,k(n))

∣∣∣∣∣∣∣ ≤∑
i∈S

πi |pi,k(n)− pj,k(n)| n→∞−→ 0,

and we conclude the case for a positive recurrent Markov chain.

• Case: Null recurrent. Assume X is null recurrent.

– If the coupled chain Z is transient, then it follows from the transi-
tion of Z,

lim
n→∞

(pi,j (n))2 = lim
n→∞

P[Zn = (j, j) | Z0 = (i, i)] = 0,

and hence limn→∞pi,j (n) = 0 for every i, j ∈ S .

– If the coupled chain Z is positive recurrent, then it would yield a
contradiction:

∞ = E[min{n | Xn = i} | X0 = i] ≤ E[min{n | Zn = (i, i)} | Z0 = (i, i)] <∞,

and hence Z cannot be positive recurrent.

– If Z is null recurrent, if there exists (i, j) such that

lim
n→∞

pi,j (n) , 0,

then by the diagonal argument, there exists a subsequence nr such
that limr→∞pi,j (nr ) exists in (0,1] (say αi) and does not depend on
i for every i, j. This implies that for every finite set F ⊂ S ,∑
k∈F

αkpk,j = lim
r→∞

∑
k∈F

pi,k(nr )pk,j ≤ lim
r→∞

pi,j (nr+1) = lim
r→∞

∑
k∈S

pi,kpk,j (nr ) =
∑
k∈S

pi,kαj = αj .

Letting F ↑ S , then we claim that
∑
k∈S αkpk,j ≤ αj , j ∈ S . If the

strict inequality holds for some state in S , then it would be a con-
tradiction ∑

k∈S
αk =

∑
k∈S

∑
j∈S

αkpk,j <
∑
j∈S

αj .

Thus
∑
k∈S αkpk,j = αj , for all j ∈ S . But then this means the sta-

tionary probability exists, and it is a contradiction. Therefore

lim
n→∞

pi,j (n) = 0; i, j ∈ S .
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Some corollaries:

Proposition 27. • If the irreducible aperiodic chain is transient or null
recurrent, then limn→∞pi,j (n) = 0 for every i, j ∈ S .

• A persistent state is null if and only if limn→∞pi,i(n) = 0 for all i ∈ S .

Proof. • Immediate beacuse µj =∞.

• Let C(i) be the irreducible closed set of states which contains the persis-
tent state i. If C(i) is aperiodic, then we apply the above theorem. If C(i)
is periodic with period d(i), then Y = {Yn = Xnd ,n ≥ 0} is an aperiodic
chain, and apply the theorem:

lim
n→∞

pj,j (nd) = lim
n→∞

P[Yn = j | Y0 = j] =
d
µj

= 0; j ∈ S .

3.4 Reversibility and Long-Term Behavior

Now we want to examine the reversal of time-scale of irreducible, positive re-
current Markov chains Xn with transition probability matrix P and stationary
distribution π under equilibrium. Assume P

π[Xn = j] = πj for every 0 ≤ n ≤N
and j ∈ S . We define the time-reversal Yn B XN−n of {Xn,0 ≤ n ≤N }. Then

P
π[Yn+1 = in+1 | Yn = in, . . . ,Y0 = i0] =

P
π[XN−n−1 = in−1, . . . ,XN = i0]
P
π[XN−n = in, . . . ,XN = i0]

=
πin+1

· pin+1,in · · ·pi1,i0
πin · pin,in−1

· · ·pi1,i0
=
πin+1

· pin+1,in

πin
= P

π[Yn+1 = in+1 | Yn = in].

Thus the time-reversal {Yn,0 ≤ n ≤ N } is a Markov chain with the transition
probability

P
π[Yn+1 = j | Yn = i] =

πj
πi
·Pj,i ; i, j ∈ S .

Definition 23 (Detailed Balance). We say a nonnegative vectorλB {λi , i ∈
S} and the transition probability matrix P are in detailed balance if

λipi,j = λjpj,i ; ∀i, j ∈ S .
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Definition 24 (Reversibility). An irreducible Markov chain X is called
reversible if the transition of the chain X and that of its time-reversal Y
are the same, i.e. the detailed balance equations hold:

πipi,j = πjpj,i ; i, j ∈ S .

In such a case we say that the irreducible chain X is reversible in equilib-
rium.

If this condition holds, then∑
i∈S

πipi,j =
∑
i

πipj,i = πj , ∀j ∈ S .

hence πP = π.

Proposition 28 (Detailed Balance Condition). If the system of detailed bal-
ance conditions holds, then π is a stationary distribution. Moreover, X is
reversible in equilibrium.

Example 8 (Ehrenfest Model). Suppose we have m gas molecules in chamber
A and chamber B connected by a very thin corridor. Let us denote Xn as the
number of molecules in chamber A at time n. At each instance, pick a random
molecule and move it from one chamber to another. Thus the transition of
{Xn,n ≥ 0} is given by pm,m−1 = 1 = p0,1 and

P[Xn+1 = i + 1 | Xn = i] = pi,i+1 = 1− i
m
, pi,i−1 =

i
m

; i = 1, . . . ,m− 1.

The detailed balance condition is that for each i,

πi

(
1− i

m

)
= πi+1 ·

i + 1
m

,

and the solution to this equation is πi =
(m
i

)
· 1

2m , for i = 0,1, . . . ,m. Indeed for
each i,

m!
i!(m− i)!

· m− i
m

=
m!

(i + 1)!(m− i − 1)!
· i + 1
m

.

Thus πi =
(m
i

)
· 1

2m , for i ∈ S is the stationary distribution.

Example 9 (Simple Random Walk). The simple random walk with transition
probabilities pi,i+1 = p ∈ (0,1) and pi,i−1 = q − 1 − p for i = 1, . . . ,M − 1, and
with p0,1 = p and pM,M−1 = q. The detailed balance equations are πip = πi+1q
for i = 0, . . . ,M − 1. T he stationary distribution is π = (c(p/q))i , where c is a
normalizing factor.
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Proposition 29 (Perron-Frobenius Theorem). For the transition probability
matrix P of a finite-state, irreducible Markov chain with period d, the eigen-
values (λ1, . . . ,λN ) of P are λ1 = 1, λj = e2π

√
−1j/d , j = 0, . . . ,d−1 and λd+1, . . . ,λN

lie inside the unit circle.

If λ1, . . . ,λN are all distinct, P are decomposed as B−1ΛB, where Λ = diag(λ1, . . . ,λN ).
If d = 1, in addition, then

lim
n→∞

Pn = lim
n→∞

B−1


1

0
. . .

0

B.

In general, P can be represented by the Jordan canonical form P = B−1MB
with M is the (N ×N ) block diagonal matrix, where the diagonal component
Ji , . . . , corresponds to the eigenvalue λi and

MB


J1

J2
. . .

 , Ji =



λi 1
λi 1

. . .
. . .
. . . 1

λi


Example 10. Consider the state space S = {1,2,3} and probability transition
matrix

P =


1 0 0

1/4 1/2 1/4
0 0 1

 .
The characteristic polynomial is λ3−(5/2)λ+2λ−1/2 = 0, and hence the eigen-
values are 1/2,1, and 1. P is decomposed as

P =


0 −1 2
1 0 1
0 1 0



1/2 0 0
0 1 0
0 0 1



−1/2 1 −1/2

0 0 1
1/2 0 1/2

 ,
and hence

Pn =


0 −1 2
1 0 1
0 1 0



(1/2)n 0 0

0 1 0
0 0 1



−1/2 1 −1/2

0 0 1
1/2 0 1/2


=


1 0 0

1
2 −

1
2n+1

1
2n

1
2 −

1
2n+1

0 0 1


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3.5 Branching Processes Again

Recall the branching process {Zn,n ≥ 0} with Z0 = 1 and P[Z1 = k] = f (k),
k ≥ 0, G(s) = E[sZ1 ] and f (0) + f (1) ∈ (0,1), f (0) > 0. Recall also that the
extinction probability η B P[T = min{n | Zn = 0} < ∞] is the smallest non-
negative solution of the equation s = G(s), s ∈ [0,1]. We shall consider the
condition En = {n < T <∞}, i.e. the population is still alive at time n, and the
conditional probability that Zn = j given the future extinction

p
(n)
j = P[Zn = j | En]; n ≥ 1, j ≥ 1.

Note that under the condition 0 < f (0) + f (1) < 1, 0 < P[En] < 1, and the
probability η of extinction satisfies 0 < η < 1. Recall P[Zn = 0] = Gn(0), and
observe P[En] = P[T <∞]−P[T ≤ n] = P[T <∞]−P[Zn = 0] = η −Gn(0). Then

P[Zn = j,En] = P[Zn = j]·P[each of j descendants extinct in the future] = P[Zn = j]nj ; j ≥ 1.

Computing the conditional probability generating function,

Gπn (s) = E[sZn | En] =
∞∑
j=0

p
(n)
j · s

j

=
∞∑
j=0

sj
P[Zn = j,En]

P[En]

=
∞∑
j=0

sj
P[Zn = j] ·nj

P[En]

=
Gn(sη)−Gn(0)
η −Gn(0)

= 1−Hn(sη)l s ∈ [0,1),

where

Hn(s)B
η −Gn(s)
η −Gs(0)

,
Hn(s)
Hn−1(s)

=
h(Gn−1(s))
h(Gn−1(0))

, h(s)B
η −G(s)
η − s

, 0 ≤ s < η.

Since G(·) is convex and non-decreasing on [0,η), h is non-decreasing and
Gn−1(·) is non-decreasing. Then

Hn(s) =
Hn−1(s)h(Gn−1(s))

h(Gn−1(0))
≥Hn−1(s); s < η.

Taking the limits, we obtain

H(sη) = lim
n→∞

Hn(sη), Gπ(s) = lim
n→∞

Gπn (s) = 1−H(sη)
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exist for s ∈ (0,1]. Therefore the limiting probability limn→∞p
(n)
j = πj exists as

the coefficient of sj in the generating function Gπ(s) for every j ≥ 0. Moreover,
by taking the limits as n→∞ of

Hn(G(s)) =
η −Gn(G(s))
η −Gn(0)

=
η −G(Gn(0))
η −Gn(0)

·
η −Gn+1(s)
η −Gn+1(0)

= h(Gn(0)) ·Hn+1(s),

we obtain

H(G(s)) = lim
n→∞

h(Gn(0)) ·H(s) = lim
s↑η

η −G(s)
η − s

·H(s) = G′(η) ·H(s); 0 ≤ s < η.

Combining, we conclude the functional relationship

Gπ(η−1G(sη)) = 1−H(G(sη)) = 1−G′(η)·H(sη) = 1−G′(η)·(1−G′(s)) = G′(η)Gπ(s)+1−G′(η).

• If µ = E[Z1] ≤ 1, then η = 1 and G′(η) = µ. This means

Gπ(G(s)) = µGπ(s) + 1−µ; 0 ≤ s < η.

• If µ = G′(η) , 1, then

lim
s↑η

H(s) = lim
s↑η

H(G(s)) = lim
s↑η

H(s) ·G′(s).

This implies that lims↑ηH(s) = 0, and hence

lim
s→1

Gπ(s) = 1− lim
s↑η

H(s) =
∑
j

πj = 1.

The distribution of Zn, conditional on future extinction, converges as
n→∞ to {πj , j ≥ 0}. We call µ > 1 the supercritical case and µ < 1 the
subcritical case.

• If µ = 1, the critical case, thenG′(η) = 1 with η = 1, and henceGπ(G(s)) =
Gπ(s). Since G(s) > s for every s < 1, Gπ(s) = Gπ(0) = 0 for every s < 1.
Thus πj = 0 for every j.

We summarize as

lim
n→∞

P[Zn = j] = 0, lim
n→∞

P[Zn = j | En] = 0.

If in addition G′′(1) <∞, then σ2 = Var[Z1] <∞ and

lim
n→∞

P

[ Zn
nσ2 ≤ y

]
= 1− e−2y .



4Continuous-Time Markov Chains

4.1 Poisson Process

The Poisson process is a special case of birth processes, and a birth process is an
example of a continuous-time Markov chain. Without loss of generality, we
set N (0) = 0. The state space of N (t), t ≥ 0 is the whole non-negative integers
(N (t) ∈ {0,1,2, . . . }), and s 7→N (s) is non-decerasing, i.e. N (s) ≤N (t) whenever
s ≤ t. We set the sample path s 7→ N (s), right continuous with left limits (aka
cadlag). We call such a stochastic process a counting process.

Definition 25 (Poisson Process with intensity λ). A counting process
{N (t), t ≥ 0} taking values in S = N0 is called a Poisson process with (con-
stant) intensity λ > 0 if the conditional probability satisfies

P[N (t + h) = n+m |N (t) = n] =


1−λh+ o(h), m = 0

λh+ o(h), m = 1

o(h), m ≥ 2

t ≥ 0

infinitesimally as h ↓ 0, and N (t) −N (s) is independent of the times of
increments N (·) during [0, s] for every 0 ≤ s ≤ t <∞.

Suppose {N (t), t ≥ 0} is a Poisson process with intensity λ. From the definition
let us derive a differential equation for the MGF Gt(θ) = E[eθN (t)] at time
t ≥ 0 for θ < 0: first using the conditioning and then using the independent
increment property:

Gt+h(θ) = E[eθN (t+h)] = E[eθN (t)] ·E[eθ(N (t+h)−N (t)) |N (t)]

= E[eθN (t)] ·E[eθ(N (t+h)−N (t))]

= E[eθN (t)(eθλh+ (1−λh+ o(h)))]

= Gt(θ) +λh(eθ − 1)Gt(θ) + o(h).

Hence Gt(θ) = exp(λ(eθ − 1)t), solving the differential equation

d
dt
Gt(θ) = lim

h↓0

Gt+h(θ)−Gt(θ)
h

= λ(eθ − 1)Gt(θ); t ≥ 0.
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Hence we claim the marginal distribution of N (t) is a Poisson distribution
with mean λt, i.e.,

P[N (t) = k] =
(λt)ke−λt

k!
; k = 0,1,2, . . . , t > 0.

Definition 26 (Interarrival of Events). We define the event times {Tn,n ≥
0} recursively with T0 = 0 and Tn = inf{t > 0 | N (t) = n}, and the interar-
rival times Xn = Tn − Tn−1, for n ≥ 1.

If N (·) is a Poisson process with intensity λ, then P[X1 > t] = P[N (t) = 0] =
e−λt . That is, the first even time T1 = X1 is distributed exponentially with
parameter λ. Moreover,

P[Xn+1 > t | X1 = t1, . . . ,Xn = tn] = P[no event in [T ,T+t]] = P[N (T+t)−N (T ) = 0] = e−λt

for every 0 < t1 < · · · < tn and T B t1 + · · ·+ tn and every t ≥ 0 and n ≥ 1. Thus
Xn+1 is independent of X1, . . . ,Xn and distributed exponentially with parame-
ter λ for every n ≥ 1. Thus Tj is the sum of IID exponential random variables,
i.e., is Gamma distributed with parameter (λ,j) for j ∈N. Note that for every
j ∈N0 and t > 0,

N (t) ≥ j⇐⇒ Tj ≤ t,

and hence

P[N (t) = j] = P[Tj ≤ t < Tj+1] = P[Tj ≤ t]−P[Tj+1 ≤ t] =
(λt)je−λt

j!
.

4.2 Birth Process

By setting the intensity depend on state, we can generalize the Poisson process
to a birth process.

Definition 27 (Birth Process with intensities {λn}). A counting process
{N (t), t ≥ 0} taking values in S = N0 is called a birth process with intensi-
ties {λn > 0,n ≥ 0}, if the condition probability satisfies

P[N (t + h) = n+m |N (t) = n] =


1−λnh+ o(h), m = 0

λnh+ o(h), m = 1

o(h), m ≥ 2

t ≥ 0
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infinitsimally as h ↓ 0 and N (t) −N (s) is independent of the times of in-
crements of N (·) during [0, s] for every 0 ≤ s ≤ t <∞.

Example 11 (Simple Birth Process/with Immigration). Fix µ > 0. Each indi-
vidual gives a birth independently of one another with probability λh+o(h) in
the infintiesimal small interval (t, t+h) for every time t ≥ 0, and no individual
dies. Let the total population size be N (t) at time t ≥ 0. The number M of
births in the interval (t, t + h) satisfies the conditional probability

P[M =m |N (t) = n] =
(
n
m

)
(λh)m(1−λh)n−m + o(h).

This corresponds to the birth process with λn = nλ.
To generalize this, we can take λn = nλ + λ0 for n ≥ 0. λ0 is called the

immigration. If λ = 0, then it just becomes a Poisson process with intensity λ0.

Let us consider the transition probability Pi,j (t) = P[N (t) = j | N (0) = i] for
t ≥ 0 and i, j ∈ S . It follows by definition that

Pi,j (t) = P[N (t) = j |N (0) = i] = P[N (s+ t) = j |N (s) = i]; s, t ≥ 0.

Note that Pi,j (t) = 0 for i > j, because the simple path is non-decreasing. More-
over, for this birth process, it always moves up, if it jumps. With this obser-
vation, as h ↓ 0, the infinitesimal change of conditional probability between
time t and t + h is

Pi,j (t+h) = E[P[N (t+h) = j |N (t)] |N (0) = i] = Pi,j−1(t)·λj−1h+Pi,j (t)·(1−λjj)+o(h),

by conditioning on N (t), and hence we obtain Kolmogorov’s forward equa-
tion.

Proposition 30 (Kolmogorov’s Forward Equation).

d
dt
Pi,j (t) = λj−1Pi,j−1(t)−λjPi,j (t); j ≥ i

with λ−1 = 0 and Pi,j (0) = δi,j .

This can be generalized to the Fokker-Planck equation. Similarly, we can con-
dition on N (h), and we get

Pi,j (t+h) = E[P[N (t+h) = j |N (h)] |N (0) = i] = Pi+1,j (t)·λih+Pi,j (t)·(1−λih)+o(h),

and hence we get Kolmogorov’s backward equation.

Proposition 31 (Kolmogorov’s Backward Equation).

d
dt
Pi,j (t) = λiPi+1,j (t)−λiPi,j (t); j ≥ i

with Pi,j (0) = δi,j .
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Proposition 32. The forward equation has a unique, nonnegative solution. If
Pi,j (·) is the unique solution to the forward equation, then it satisfies the back-
ward equation and any nonnegative solution

∏
i,j (·) to the backward equation

satisfies Pi,j (·) ≤
∏
i,j (·).

Proof. Note that for i > j, Pi,j (t) = 0, because the simple path is non-decreasing.
Then the forward equation with j = i is rewritten as

d
dt
Pi,i(t) = −λiPi,i(t),

and hence, by setting Pi,i(0) = 1 and solving the ODE, we obtain Pi,i(t) = e−λi t

for t ≥ 0. Let us derive a recursive relation for the Laplace transform

P̂i,j (θ) =
∫ ∞

0
e−θtPi,j (t)dt; j ≥ i, θ ≥ 0

of Pi,j (·) is a solution to the forward equation. By using integration by parts,

(λj +θ)P̂i,j (θ) =
∫ ∞

0
e−θt

(
λjPi,j (t) +

d
dt
Pi,j (t)

)
dt

=
∫ ∞

0
e−θtλj−1Pi,j−1(t)dt

= λj−1P̂i,j−1(θ); θ ≥ 0, j ≥ i + 1,

and

P̂i,i(θ) =
∫ ∞

0
e−θte−λi t dt =

1
θ +λi

; θ ≥ 0.

Thus we obtain the Laplace transform of the solution Pi,j (·) to the forward
equation

P̂i,j (θ) =
1
λj

j∏
k=1

λk
θ +λk

; j ≥ i.

By the uniqueness of the inverse Laplace transform, the solution Pi,j (·) is uniquely
determined.

Similarly, any solution
∏
i,j (·) to the backward equation will have its Laplace

transform
∏̂
i,j (θ) =

∫∞
0 e−θt

∏
i,j (·)dt and θ ≥ 0 satisfies

Π̂i,i(t) =
1

(θ +λi)

and

(λi +θ)Π̂i,j (θ) =
∫ ∞

0
e−θtλiΠ̂i+1,j (t)dt = λiΠ̂i+1,j (θ); j ≥ i + 1.
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Since the above Laplace transform P̂i,j (θ) satisfies the same system of equa-
tions:

(λi+θ)P̂i,j (θ) = (λi+θ)· 1
λj
·
j∏
k=i

λk
θ +λk

=
λj
λi

j∏
k=i+1

λk
θ +λk

= λi P̂i+1,j (θ); j ≥ i+1,

again by the uniqueness of inverse Laplace transforms, the solution Pi,j (·) of
the forward equation satisfies the backward equation.

Finally, in matrix form, the Laplace transformed system of backward equa-
tion is rewritten as

(θI +Λ)Π̂(θ) = I +ΛRΠ̂(θ),

where
∏̂

(θ) = (
∏̂
i,j (θ))i,j≥0, I is the identity matrix, Λ = diag(λ0,λ1, . . . ), and

R = (ri,j )i,j≥0 with ri,i+1 = 1 and ri,j = 0 for j , i + 1. The minimal solution to
this system can be approximated by

P̂(0) = (θI +Λ)−1, P̂(n+1) = (θI +Λ)−1(I +ΛRP̂(n)(θ)); n ≥ 0,

in the sense that P̂(n)(θ) ≤
∏̂

(θ), n ≥ 0 in elementwise, limn→∞ P̂(n)(θ) = P̂(θ) =
(P̂i,j (θ))i,j≥0 (thanks to monotonicity) from the Laplace transform of the solu-

tion of the forward equation, and hence P̂i,j (θ) ≤
∏̂
i,j (θ) for every i, j ≥ 0. This

completes our proof.

Here since the sample path is non-decreasing, the mathematical treatment
becomes simple. The minimal solution for the forward and backward equa-
tions coincide, in general. The problem of determining uniqueness or non-
uniqueness amounts to the explosion phenomena. The limit T∞ B limn→∞Tn
(time of explosion) of event times might be finite.

Definition 28 (Honest/Dishonest). If P[T∞ =∞] = 1, we call the count-
ing process honest; if the time of explosion comes in a finite time with
positive probability, i.e., P[T∞ = ∞] < 1, then we call the counting pro-
cess dishonest.

Intuition is that if λn are large for large n, then the interarrival time length
becomes short exepctedly and the birth process explodes in a finite time. For
the birth process, we have a simple dichotomy. We have

E[T∞] = E

 ∞∑
n=1

Xn

 =
∞∑
n=1

1
λn−1

.

Thus if
∑∞
n=0λ

−1
n < ∞, then E[T∞] < ∞ and P[T∞ = ∞] = 0. For the case of∑∞

n=0λ
−1
n =∞,

E[e−T∞ ] = lim
n→∞

E

 n∏
i=1

e−Xi

 = lim
n→∞

n∏
i=1

E[e−Xi ] = lim
n→∞

n∏
i=1

1

1 +λ−1
i−1

= 0.
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Thus P[T∞ =∞] = 1 if
∑∞
n=0λ

−1
n =∞.

Let’s fix constants T and i ≥ 0. We can show that the birth process has the
Markov property, that is, conditional on the event {N (T ) = i}, the post-T evo-
lution {N (t)−N (T ), t > T } is independent of the pre-T evolution {N (s) | 0 ≤ s ≤
T }. This means intuitively that the future and the past are independent con-
ditionally on the present. The birth process, in fact, has a stronger property,
known as the strong Markov property.

Definition 29 (Stopping Time). We call the random time τ : Ω→ R
+ ∪

{∞} a stopping time for a birth process {N (t), t ≥ 0} if 1{ω|τ(ω)≤t} is a func-
tion of the values {N (s),0 ≤ s ≤ t} for every t ≥ 0.

We may decide whether τ occurs or not by time t, knowing only the values
{N (s) | 0 ≤ s ≤ t} until time t. Note that the event times Ti , i ≥ 0 are stopping
times and a positive constant (as a random time) is a stopping time, however,
both T4−2 and (T1 +T2)/2 are not a stopping time. With some measure theory,
we can show the following:

Proposition 33 (Strong Markov Property). For a birth processN (·) and a stop-
ping time τ for N (·),

P[A | {N (τ) = i} ∩B] = P[A | {N (τ) = i}]

where A is a post τ event which depends on {N (s), s > τ} and B is a pre τ event
which depends on {N (s), s ≤ τ}.

When τ is a constant, i.e. τ = T for some T > 0, then the strong Markov
property reduces to the (weak) Markov property.

4.3 Continuous-Time Markov Chains

Recall that the birth process has the non-decreasing, cadlag sample paths. In
general, the stochastic process can both increase and decrease. We generalize
the birth process in the previous section to discuss a continuous-time Markov
chain in a countable state space S . Similarly to the discrete case, we call a
stochastic process a (continuous) Markov chain if for every n ≥ 1, t0, t1, . . . , tn >
0 for every i1, . . . , in−1, j ∈ S ,

P[X(tn) = j | X(t1) = i1, . . . ,X(tn−1) = in−1] = P[X(tn) = in−1].
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Definition 30 (Transition Probability). We denote the transition proba-
bility Pi,j (s, t) = P[X(t) = j | X(s) = i] for 0 ≤ s ≤ t < ∞, and i, j ∈ S . We
call it (time) homogeneous if Pi,j (s, t) = Pi,j (0, t − s) for every 0 ≤ s ≤ t <∞,
i, j ∈ S , and in such a case, we write Pi,j (t − s) = P[X(t − s) = j | X(0) = i].
The matrix-valued function Pt = (Pi,j (t))i,j∈S and t ≥ 0 determines the
probability distribution of the continuous-time Markov chain.

We only consider time homogeneous chains. Since P[X(0) = i | X(0) = i] = 1
and P[X(0) = j | X(0) = i] = 0 if j , i, we have P0 = I. Because of total probabil-
ity,

∑
j∈S Pi,j (t) = 1 for every t ≥ 0, and by definition of conditional probability,

we may derive the Chapman-Kolmogorov equations for the continuous case:

Pi,j (s+ t) =
∑
k∈S

Pi,k(s)Pk,j (t) =
∑
k∈S

Pi,k(t)Pk,j (s).

Equivalently,
Ps+t = PsPt = PtPs; s, t ≥ 0.

This property is called the semigroup property, and we say Pt for t ≥ 0 is a
stochastic semigroup.

Definition 31 (Standard Semigroup). The semigroup Pt , t ≥ 0 is standard
if limt↓0 Pt = I element wisely, i.e., limt↓0 Pi,i(t) = 1 and limt↓0 Pi,j (t) = 0 if
j , i.

We assume the map t 7→ Pi,j (t) is continuous for every i, j ∈ S , and moreover,
we assume its differentiability:

lim
h↓0

1
h

(Ph − I) = G = (gi,j )i,j∈S .

We call such a limit the generator of a Markov chain.

Definition 32 (Uniform Semigroup). The semigroup Pt , t ≥ 0 is uniform
if limt↓0 Pt = I uniformly among elements in S .

• If S is finite, then the standard semigroup property and the uniform
semigroup property are equivalent. In general, uniform semigroups are
standard semigroups, but not vice versa.

• If Pt is standard, then there exists h > 0 such that Pi,i(s) > 0 for every
s ∈ [0,h], and then for every t ≥ 0, choose n large enough so that nh ≥ t
or h ≥ t/n. For such n, we have by

Pi,i(t) ≥ {Pi,i(t/n)}n > 0.
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Thus Pi,i(t) > 0 for every t > 0. For j , i, the following dichotomy is
known as Lévy dichotomy: either Pi,j (t) = 0 for every t > 0 or Pi,j (t) > 0 for
every t > 0 holds.

Assuming the differentiability of Pi,j (t) with respect to t, we approximate
Pj,j (h) ≈ 1 + gj,jh and Pk,j (h) ≈ gk,jh for small h, and hence,

Pi,j (t + h) =
∑
k∈S

Pi,k(t)Pk,j (h) ≈
∑
k,j

Pi,k(h)gk,jh+ Pi,j (t)(1 + gj,jh); t ≥ 0.

This leads us to the Kolmogorov forward equation for the continuous case:

d
dt
Pi,j (t) = lim

h↓0

1
h

(Pi,j (t + h)− Pi,j (t)) =
∑
k∈S

Pi,k(t)gk,j ,

or equivalently,
d
dt

Pt = PtG; t ≥ 0.

Similarly, we form an approximation by conditioning on X(h) first,

Pi,j (t + h) =
∑
k∈S

Pi,k(h)Pk,j (t) ≈
∑
k,i

gi,khPk,j (t) + (1 + gi,ih)Pi,j (t),

and this leads to the Kolmogorov backward equation:

d
dt
Pi,j (t) = lim

h↓0

1
h

(Pi,j (t + h)− Pi,j (t)) =
∑
k∈S

gi,kPk,j (t),

or equivalently,
d
dt

Pt = GPt ; t ≥ 0.

Example 12 (Birth Process). The birth process has generator G = (gi,j )i,j∈S
with S = N0, gi,i = −λi and gi,i+1 = λi and gi,j = 0 for j < i and j > i + 1.

Proposition 34 (Kolmogorov Equations). Suppose the Markov chain on a
countable state space S has uniform semigroup Pt . Then it is a unique so-
lution to the forward equation and the backward equation with boundary
condition P0 = I. Moreover, it is a matrix exponential of tG, i.e.,

Pt = etG B
∞∑
k=0

(tG)k

k!
; t ≥ 0,

and G(1′) = 0′ .
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Suppose X(s) = i and let the holding time Ui B inf{t ≥ 0 | X(s + t) , i} at state
i ∈ S . Then we have for every x,y > 0, because of the Markov property,

P[Ui > x+ y |Ui > x] = P[Ui > x+ y | X(s+ x) = i] = P[Ui > y].

This implies that the tail probability function F(x) = P[Ui > x], x > 0 satisfies
F(x + y) = F(x) · F(y) for every x,y > 0. Solving this functional equation with
limu→∞F(u) = 0, we obtain F(x) = e−gi,ix, where gi,i = d

dt Pi,i(0). This means that
the holding time Ui is distributed exponentially with parameter −gi,i(> 0) for
every i ∈ S .

• If gi,i = −∞, then the state i does not hold the Markov chain and it moves
out of state i instantaneously; if gi,i = 0, then state i holds the Markov
chain forever (state i is an absorbing state), and if gi,i ∈ (−∞,0), we say i
is a stable state. Thus it is natural to think the condition supi∈S (−gi,i) <
∞. Indeed this is equivalent to the uniform semigroup property.

• In a short time (h > 0) a jump occurs with probability 1 − Pi,i(h), and in
that case, it jumps to state j ∈ S with probability Pi,j (h). Thus we have

P[jumps to j | there is a jump] ≈
Pi,j (h)

1− Pi,i(h)
h↓0−→ −

gi,j
gi,i

= −hi,j ; j , i.

4.4 Embedded Chains

Given a continuous Markov chain X(t), t ≥ 0, the event jump times are de-
noted by T1,T2, . . . with T0 = 0. Then Zn = X(Tn), t ≥ 0 forms a discrete-time
Markov chain called a jump chain. The transition probability of Z is given
by hi,j , i , j, if gi,i ∈ (−∞,0). The holding time for each state i is distributed
exponentially with parameter −gi,i .

Conversely, if there is a discrete-time Markov chain Zn, n ≥ 0 in S with
transition probability matrix hi,j , we define the parameters gi,i ≥ 0, i ∈ S and
gi,i = −hi,jgi,i . Conditionally on the sample path of Zn = in, define a sequence
U0,U1, . . . of exponential random variables with parameters −gi0,i0 , gi1,i1 , . . . ,
i.e.,

P[Un ≥ t] = exp(−gin,int); t ≥ 0, n ≥ 0,

and define Tn+1 =U0 + · · ·+Un, n ≥ 0 and T0 = 0. We may construct a minimal
continuous-time Markov chain X(·) by

X(t) =

Zn, Tn ≤ t < Tn+1 for some n

∞, otherwise

If T∞ = limn→∞Tn < ∞, then we call T∞ an explosion time and move the
Markov chain X(·) to a new state {∞}, after time T∞, by extending the state
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space S to the new state space S∪{∞}. The continuous-time Markov chainX(·)
constructed by this recipe does not explode if S is finite, or if supi∈S (−gi,i) <∞
or if Z starts from its persistent state i ∈ S .

Proposition 35. If gi,i = 0, then the state i is persistent. If gi,i < 0, state i is
persistent if and only if so is for the jump chain Z. Moreover,∫ ∞

0
Pi,i(t)dt =∞

if and only if state i is persistent.

Definition 33 (Irreducible). We say a continuous-time Markov chain is
irreducible if for every i, j ∈ S , then there exists t such that Pi,j (t) > 0.

Definition 34 (Stationary Distribution). We say a probability vector πB
(πi , i ∈ S) with πi ≥ 0,

∑
j∈S πj = 1 is a stationary distribution if π = πP t

for every t ≥ 0.

Since Pt = etG, t ≥ 0, we observe

πP t = π
∞∑
k=0

(tG)k

k!
= π+π

∞∑
k=1

(tG)k

k!
; t ≥ 0.

Thus πP t = π is equivalent πG = 0. This gives us an alternative definition for
a stationary distribution.

Proposition 36. For an irreducible Markov chain with standard semigroup
Pt ,

(a) If there exists a stationary distribution π, then it is unique and
limt→∞ Pi,j (t) = πj for every i, j ∈ S .

(b) If there is no stationary distribution, then limt→∞ Pi,j (t) = 0 for every
i, j ∈ S .

Example 13 (Two-State Markov Chain). Suppose that X is a Markov chain
with generator with α,β > 0,

GB

(
−α α
β −β

)
for state space S = {1,2}. The system Pt = PtG of the forward equations reads

P ′1,1(t) = −αP1,1(t) + βP1,2(t), P ′1,2 = αP1,1(t)− βP1,2(t)
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P ′2,1 = −αP1,2(t) + βP2,1(t), P ′2,2(t) = αP1,2(t)− βP2,2(t)

Since this has finite state space, the chain is not exploding. Let us diagonalize
the generator matrix G:

G = BΛB−1, B =
(
α 1
−β 1

)
, ΛB

(
−(α + β) 0

0 0

)
Thus the transition probability is given by

Pt = etG =
∞∑
n=0

(tG)n

n!
= B

(
e−(α+β)t 0

0 1

)
B−1 =

1
α + β

(
αh(t) + β α(1− h(t))
β(1− h(t)) α + βh(t)

)
,

where h(t) = e−(α+β)t , and its stationary distribution is π = (1 − ρ,ρ), where
ρ = α

α+β .

Example 14 (Uniformly Constructed Markov Chain). Suppose that Z is a
discrete-time Markov chain with transition matrix (hi,j )i,j∈S = H, and let N (·)
be a Poisson process with intensity λ and with the nth time of arrival of event
Tn, n ≥ 0, and T0 = 0. Define X(t) = Zn, if Tn ≤ t < Tn+1 for t ≥ 0. Then the
corresponding transition semigroup Pt is given by Pt = eλt(H−I, because

Pi,j (t) = P[X(t) = j | X(0) = i] =
∞∑
n=0

P[X(t) = j,N (t) = n | X(0) = i]

=
∞∑
n=0

(λt)n

n!
e−λtP[Zn = j | Z0 = i]

= e−λt
∞∑
n=0

(λt)n(H)ni,j
n!

; i, j ∈ S

4.5 Birth-and-Death Process

Let us consider the continuous birth-and-death process with birth rate λn and
death rate µn. The generator G = (gi,j )i,j≥0 is given by

gi,i =

−λ0, i = 0

−(λi +µi), i ≥ 1
, gi,i+1 = λi , i ≥ 0; gi,i−1 = µi , i ≥ 1.

If λ0 = 0, then there is no jump from the state 0, and hence, the state 0 is
absorbing. If supn(λn +µn) <∞, then it is uniform.

We want to find the stationary distribution π. We may consider the de-
tailed balance equation for the embedded process or simply πG = 0, that is,

−λ0π0 +µ1π1 = 0, λn−1πn−1 − (λn +µn)πn +µn+1πn+1 = 0; n ≥ 1.
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Solving this we see that if

C =
∞∑
n=0

λ0 · · ·λn−1

µ · · ·µn
<∞,

then the stationary distribution is given byπ0 = C−1, andπn = λ0 · · ·λn−1π0/(µ1 · · ·µn)
for n ≥ 1.

Example 15 (Linear Birth-and-Death Process). With λn = nλ and µn = nµ for
some costants λ,µ > 0 and with P[X(0) = I] = 1 for some I ≥ 1, let us compute
pj (t) = P[X(t) = j | X(0) = I]. It does not yield uniform semigroup. By the
forward equation,

p′j (t) = pj−1(t) ·λ(j − 1) + pj+1(t) ·µ(j + 1)− (λ+µ)jpj (t); t ≥ 0,

for j ≥ 1. Multiplying by sj and summing over j, we obtain a relationship
for our familiar generating function G(s, t) =

∑∞
j=0 s

jpj (t) = E[sX(t)], s ∈ [0,1],
t ≥ 0:
∞∑
j=0

sjp′j (t) = λs2
∞∑
j=1

sj−2pj−1(t)·(j−1)+µ
∞∑
j=0

sjpj+1(t)·(j+1)−(λ+µ)
∑
j=0

jsj−1pj (t),

or equivalently, because we have

∂sG(s, t) =
∞∑
j=1

jsj−1pj (t) =
∞∑
j=1

sj−2(j − 1)pj−1(t) =
∞∑
j=0

sjpj+1(t),

we get the simplified expression

∂tG(s, t) = (λs −µ)(s − 1)∂sG(s, t); s ∈ [0,1], t ≥ 0

with G(s,0) = sI . The solution will be

G(s, t) =


(
λt(1−s)+s
λt(1−s)+1

)I
, µ = λ(

µ(1−s)−(µ−λs)e−t(λ−µ)

λ(1−s)−(µ−λs)e−t(λ−µ)

)I
, µ , λ

We can actually examine the simple birth-and-death process in two differ-
ent ways.

Embedded Random Walk

Let T = inf{t > 0 | X(s + t) , n, X(s) = n} be the time to the next jump. It is an
exponential random variable with parameter n(λ + µ), and at the jump time
the transition is simple random walk, that is,

P[X(s+T ) = X(s) = 1 | X(s) = n] =
λ

λ+µ
= 1−P[X(s+T ) = X(s)+1 | X(s) = n]; n ≥ 1.
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Note that the continuous-time Markov chain cannot jump more than 1 at the
same time.

Embedded Age-Dependent Branching Process

Each individual survives for the exponential random time with parameter
λ + µ, and dies without offspring with probability µ/(λ + µ) and dies with
two children with probability λ/(λ + µ). This is an age dependent branch-
ing process. The age distribution is exponential with parameter λ+µ and the
generating function of then number N of offspring is given by

GN (x)B
∞∑
k=0

xkP[N = k] = x0 ·
µ

µ+λ
+ x2 · λ

µ+λ
=
µ+ x2λ

λ+µ
.

We sum all the individuals and define the sum as X(t) for t ≥ 0. Recall that
assuming X(0) = 1, and letting T be the life of the individual with PDF fT (·),
for u ≤ t, we compute the conditional expectation

E[sX(t) | T = u] = E

 N∏
i=1

E[sX(t−u) |N ] | T = u

 = E[(G(s, t−u))N ] = GN (G(s, t−u)).

Thus we get

G(s, t) = E[sX(t)] = E[E[sX(t) | T ]]

=
∫ ∞

0
E[sX(t) | T = u]fT (u)du

=
∫ ∞

0
(s ·1{u>t} +GN (G(s, t −u)) ·1{u≤t})fT (u)du

=
∫ t

0
GN (G(s, t −u))fT (u)du +

∫ ∞
t
sfT (u)du; t ≥ 0, 0 ≤ s ≤ 1.

In particular, if fT (t) = λ̃e−λ̃t , we have by change of variables,∫ t

0
GN (G(s, t −u))fT (u)du = e−λ̃t

∫ t

0
GN (G(s,v))λ̃eλ̃v dv,

and hence it follows from

∂tG(s, t) = ∂t

(∫ t

0
GN (G(s, t −u))fT (u)du +

∫ ∞
t
sfT (u)du

)
= −λ̃

∫ t

0
GN (G(s,v))λ̃e−λ̃(t−v) dv + λ̃GN (G(s, t))− λ̃se−λt

= λ̃G (G(s, t))− λ̃(G(s, t)− se−λ̃t)− λ̃se−λ̃t ,
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that
∂tG(s, t) = λ̃(G (G(s, t))−G(s, t)); t ≥ 0, 0 ≤ s ≤ 1.

The boundary condition is G(s,0) = s for 0 ≤ s ≤ 1. Substituting GN (x) with
λ̃ = λ+µ, we obtain the forward equation for

∂tG(s, t) = λ[G(s, t)]2 − (λ+µ)G(s, t) +µ.

This is a backward equation of the process with respect to t. Then going back
to the functional relation, we can rewrite it as an integral equation:∫ G(s,t)

s

1
GN (u)−u

du = λ̃t,

if GN (u) , u for s ≤ u ≤ G(s, t).

Proposition 37 (Dynkin’s Theorem).

G(1, t) =
∞∑
j=0

P[X(t) = j] = 1 iff
∫ 1

1−ε

1
GN (u)−u

du =∞ for every ε ∈ (0,1).

Proof. Let us choose s0 ∈ (0,1) such that GN (s) , s for every s0 < s < 1, and then
choose s1, t1 with s0 < s1 < 1 and t1 > 0 such that s1 − λ̃t1 > s0. It follows that
|G(s, t)| < λ̃, and hence G(s, t) ≥ s − λ̃t > s0 for s1 < s < 1 and 0 < t < t1. Also we
have |G(s, t)| < 1 for every |s| < 1. Thus we have∫ G(s,t1)

s

du
GN (u)−u

= λ̃t1, s1 < s < 1.

As s ↑ 1, if ∫ 1

1−ε

du
GN (u)−u

<∞,

we must have G(1, t1) < 1. If instead∫ 1

1−ε

du
GN (u)−u

=∞,

then we must have G(1, t1) = 1. Since we have either G(1, t) = 1 for every t ≥ 0
or G(1, t) < 1 for every t ≥ 0, we conclude our proof.

If G ′N (1) <∞, by Taylor expansion GN (u) − u = (G ′N (u) − 1)(u − 1) + o(u − 1) in
the neighborhood of u = 1, we have G(1, t) = 1.
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4.6 Special Continuous-Time Markov Chains

Non-Homogeneous Simple Birth-and-Death Process

Consider the case of the birth-and-death process where the birth and death
rates are dependent on the time t, that is, we set λn = nλ(t) and µn = nµ(t) for
some functions λ and µ. If the functions are constant, obviously this becomes
the time-homogeneous birth-and-death processes. Suppose the initial value
is X(0) = 1. Then the transition probability is pj (t) = P[X(t) = j] satisfies the
Kolmogorov equation

ṗj (t) = (j − 1)λ(t)pj−1(t)− j(λ(t) +µ(t))pj (t) + (j + 1)µ(t)pj+1(t); j ≥ 1,

where ṗ0(t) = µ(t)p1(t).
Following the derivation of the PGF of the homogeneous simple birth-

and-death process, we replace the constants with their respective functions,
the PGF G(s, t) satisifes

∂G
∂t

(s, t) = (sλ(t)−µ(t))(s − 1)
∂G
∂s

(s, t)

with the boundary condition G(s,0) = s.

Nonlinear Epidemic

Suppose we have N + 1 individuals among which there is one sick individual
and there are N healthy individuals at time 0. Let X(t) be the number of
healthy individuals, with X(0) = N . Assume there is no cure, and if X(t) = n,
then the probability there of new infection in a short time is proportional to
the possible encounters among the individuals, i.e.,

P[X(t + h) = n+ 1 | X(t) = n] = λn(N + 1−n)h+ o(h); t ≥ 0

as h ↓ 0. Then the PGF

G(s, t) = E[sX(t)] =
N+1∑
k=0

skP[X(t) = k]

satisfies

G(s, t + h) = E[E[sX(t+h) | X(t)]]

=
N∑
k=0

sk(1−λk(N + 1− k)h)P[X(t) = k] +
N∑
k=0

sk+1λk(N + 1− k)hP[X(t) = k] + o(h),

and thus we have

1
h

(G(s, t+h)−G(s, t)) =
N∑
k=0

sk+1λk(N+1−k)P[X(t) = k]−
N∑
k=0

skλk(N+1−k)P[X(t) = k]+o(h)
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for s ∈ (−1,1) as h ↓ 0. The LHS becomes the time-derivative of G(s, t) and the
RHS is represented by the first and second derivatives of G(s, t) with respect
to s:

∂G
∂t

(s, t) = λ(1− s)
(
N · ∂G

∂s
(s, t)− s · ∂

2G

∂s2
(s, t)

)
; s ∈ (−1,1), t ≥ 0

with the boundary condition G(s,0) = sN for some s ∈ (−1,1). There is no
explicit solution to this.

Birth-and-Death Process with Immigration

Consider the population dynamics that have different subpopulations that
enter the system in different random times described by a Poisson process.
Let {N0(·) =N (·),N1(·), . . . } be the independent simple birth-and-death process
and {I(t), t ≥ 0} is an independent Poisson process with parameter ν and the
jump times Ti = inf{t > 0 | I(t) = i}, i ≥ 1, and T0 = 0. Define the birth-and-
death process with immigration by

Y (t)B
I(t)∑
i=0

Ni(t − Ti); t ≥ 0.

Since each Ni(t − Ti) for t ≥ Ti is a simple birth-and-death process starting
from time Ti , it represents a new subpopulation immigrates into the system
at time Ti with initial value Ni(0). For simplicity, suppose they have identical
distribution with Ni(0) = 1. We want to derive the PGF of Y (t).

Proposition 38. The conditional distribution of T1, . . . ,Tn, conditional on the
set {I(t) = n} is the same as the joint distribution of the order statistics of
n independent uniform random variables U1, . . . ,Un on the interval [0, t] for
t ≥ 0.

Proof. The joint distribution of T1, . . . ,Tn is obtained from the independent,
exponential interarrival times property:

P[T1 ∈ dt1, . . . ,Tn ∈ dtn] = νne−νtn ·1{0<t1<t2<···<tn}dt1 · · ·dtn,

and by the Markov property, the conditional probability that I(t) = n, given
the values of T1, . . . ,Tn are

P[I(t) = n | T1 = t1, . . . ,Tn = tn] = P[I(t) = n | Tn = tn] = P[Tn+1−Tn > t−tn] = e−ν(t−tn),
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for n ≥ 1. By the definition of conditional probability, the conditional density
of T1, . . . ,Tn given I(t) = n is

P[T1 ∈ dt1, . . . ,Tn ∈ dtn | I(t) = n] =
P[I(t) = n | T1 = t1, . . . ,Tn = tn] ·P[T1 ∈ dt1, . . . ,Tn ∈ dtn]

P[I(t) = n]

=
e−ν(t−tn)νne−νtn

(νt)ne−νt/n!
·1{t1<···<tn}

=
n!
tn
·1{0<t1<···<tn}.

This is the PDF of the order statistics of n independent uniform random vari-
ables U1, . . . ,Un on [0, t].

We use this to calculate GY (·):

G(s, t) = E[sY (t)] = E[E[s
∑I(t)
i=1Ni (t−Ti ) | I(t)]] ·E[sN0(t)]

= E[E[s
∑n
i=1Ni (t−Ui )] | n = I(t)] ·GN (s, t),

where GN (s, t) = E[sN (t)] is the PGF of the simple birth-and-death processN (·)
and the first term in the product can be further expanded by the i.i.d. property
of U1, . . . ,Yk that

E[E[s
∑n
i=1Ni (t−Ui )] | n = I(t)] = E[(E[sNi (t−Ui )])I(t)]

= E[(E[sN (t−U )])I(t)]

= E

(∫ t

0

1
t
GN (t −u)du

)I(t)
= exp

(
νt

(∫ t

0

1
t
GN (s, t −u)du − 1

))
= exp

(
ν

∫ t

0
(GN (s,u)− 1)du

)
; t ≥ 0.

Thus we conclude that

G(s, t) = GN (s, t)exp
(
ν

∫ t

0
(GN (s, t)− 1)du

)
; s ∈ (−1,1), t ≥ 0.

4.7 Poisson Point Process

As a generalization of Poisson processes, we can study the randomly scattered
(countable) points in R

d . For example, stars in the sky, distribution of black-
holes, distribution of plants, locations of crimes in a metropolitan area, etc.
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Definition 35 (Homogeneous Poisson Process). A countable subset Π of
R
d is called a homogeneous Poisson process with constant intensity λ > 0,

if for every measurable set A ⊆ R
d , N (A) = |Π∩A| is a Poisson random

variable with parameter λ|A|, and if for every n and every disjoint sets
A1, . . . ,An, N (A1), . . . ,N (An) are independent.

Definition 36 (Inhomogeneous Poisson Process). A countable subset Π
of Rd is called a inhomogeneous Poisson process with intensity λ : Rd →R+,
if for every measurable set A ⊆ R

d , N (A) = |Π∩A| is a Poisson random
variable with parameter λ|A|, and if for every n and every disjoint sets
A1, . . . ,An, N (A1), . . . ,N (An) are independent.

Here N (A) = |Π∩A| is the number of points in the set A and |A| is the volume
of the set A with respect to the Lebesgue measure. We allow |A| = ∞ and in
that case, we have P[|Π∩A| =∞] = 1. As a special case d = 1, it is reduced to
the Poisson process. Since

E[N (A)] =
∫
A
λ(x)dx = Λ(A),

the function Λ(·) is called a mean measure.

Proposition 39 (Superposition). Let Πi for i = 1,2 be independent Poisson
processes with parameter λi . Then Π1 ∪Π2 is a Poisson point process with
intensity λ1 +λ2.

Proposition 40 (Mapping Theorem). Let f : Rd →R be a measurable function
such that Λ(f −1({y})) = 0 for every y ∈ R

s, i.e. no multiple points in f (Π).
Assume that Λ(f −1(B)) =

∫
f −1(B)λ(x)dx <∞ for every bounded measurable set

B. Then f (Π) is a Poisson point process with mean measure Λ(f −1(·)).

Example 16 (Polar Coordinates). Consider the map f : R2 → R of the po-
lar coordinates, f (x,y) = (r,θ) where r =

√
x2 + y2 and θ = arctan(y/x), and a

Poisson point process with constant intensity λ. Then f (Π) is a Poisson point
process with the mean measure∫

f −1(B)
λdxdy =

∫
B∩f (R2)

λr dr dθ

by change of variables. Here f (R2) = {(r,θ) | r ≥ 0, 0 ≤ θ < 2π} is an infinite
strip of width 2π, and so f (Π) represents a Poisson point process is an infinte
strip.
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Proposition 41 (Conditional Property). Let Π be a Poisson point process with
intensity λ and A be a subset of R

d with 0 < Λ(A) <
∫
A
λ(x)dx < ∞. Given

N (A) = |Π ∩ A| = n, the n random points in A have the same distribution
as n points chosen independently at random in A, according the probability
Q(B) = Λ(B)/Λ(A), for B ⊆ A.

When λ(·) is constant, then Q(B) is a uniform measure. This generalizes
Proposition 38.

Proof. Let A1, . . . ,Ak be a partition of A. By the definition of Poisson point
process, for every (n1, . . . ,nk) ∈Nk

0 with n1 + · · ·+nk = n, we have

P[N (A1) = n1, . . . ,N (Ak) = nk |N (A) = n] =
P[N (A1) = n] · · ·P[N (Ak) = nk]

P[N (A) = n]

=
n!

n1! · · ·nk!
·Q(A1)n1 · · ·Q(Ak)

nk .

This multinomial distribution is the joint distribution of n points selected in-
dependently from A, according to Q.

Proposition 42 (Thinning/Coloring). Each point at x in the Poisson process Π
with intensity λ is colored with probability γ1(x) and not colored with prob-
ability 1 − γ1(x) = γ2(x). Then the random set Π1 of colored points and the
random set Π2 of non-colored points are independent Poisson point process
with intensity λ ·γ1 and λ2 ·γ2 respectively.

Proof. Using the above Theorem, we can compute the distribution directly.
For every (n1,n2) with n1 +n2 = n, we have

P[|Π1| = n1, |Π2| = n2] = P[|Π1| = n1,Π2| = n2 | |Π| = n] ·P[|Π| = n]

=
n!

n1!n2!

(∫
A
γ1(x)dQ(x)

)n1

·
(∫

A
γ2(x)dQ(x)

)n2

· [Λ(A)]ne−Λ(A)

n!

=
Λ̃(A)n1e−Λ̃1(A)

n1!
· Λ̃2(A)n2e−Λ̃2(A)

n2!
,

where

Λ̃i(A) =
∫
A
γi(x)dQ(x) ·Λ(A) =

∫
A
γ1(x) ·λ(x)dx,

because of the definition of the conditional probability measure Q for i = 1,2.
Therefore we have concluded that Π1 and Π2 are independent Poisson point
processes with intensity λ ·γ1 and λ ·γ2 respectively.

Now we would like to characterize the empty set of Poisson point processes.
This corresponds to the exponential tail of Poisson processes with intensity λ,
i.e., P[N (t) = 0] = e−λt for t ≥ 0.
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Proposition 43 (Rényi’s Theorem). Let Π be a countable set of random points
and λ : Rd → R+ is a measurable function with Λ(A) =

∫
A
λ(x)dx for every

measurable set A ⊆ R
d . If P[Π ∩ A = ∅] = e−Λ(A) for every A of the form of

finite union
⋃
k Bk(n) of some boxes Bk(n) in the proof of the Superposition

Proposition, then Π is a Poisson point process with intensity λ.

Proof. Let A be a bounded open set. We approximate N (A) = |Π∩A| by the
sequence Tn(A) =

∑
k|Bk(n)⊆A1{Π∩Bk(n),∅}. We want to compute the generating

function by the independence property

E[sTn(A)] =
∏

k|Bk(n)⊆A
(s(1− e−Λ(Bk(n)) + e−Λ(Bk(n))) =

∏
k|Bk(n)⊆A

(s+ (1− s)e−Λ(Bk(n))).

Using convexity and Taylor series expansions, for every δ > 0, we claim that
there exists ε such that e−(1−s)x ≤ s + (1 − s)e−x ≤ e−(1−s)xε for 0 < x < δ with
limδ→0 ε = 1. Using this inequality with δ = maxk|Bk(n)⊆AΛ(Bk(n)) =Mn(A;Λ).



5Convergence of Random Variables

5.1 Introduction

Recall that in real analysis, we say a sequence of real numbers an converges to
some number a as n→∞ (an→ a as n→∞) if for all ε > 0, there exists some
N =Nε such that |an − a| < ε for all n ≥Nε.

• If a =∞, then an→∞ means that ∀∆ > 0, there exists N = N∆ such that
an > ∆ for all n ≥N∆.

• Another way to prove an→ a is the Cauchy criterion.

Why do we need to discuss the convergence of random variables separately?
This is because Xn → X as n → ∞ does not make sense. Random variables
Xn and X are functions on a sample space Ω : Xn = Xn(ω). Convergence of
random variables follows much more closely the convergence of a sequence
of functions. Recall the different forms:

• Pointwise: ∀x ∈ [0,1], fn(x)→ f (x).

• Uniform: ∀x ∈ [0,1], ∀ε > 0, ∃N = Nε such that |fn(x) − f (x)| < ε for all
n ≥Nε.

• Almost everywhere: There exists a set K in the Borel σ−algebra B([0,1]),
such that µ(K) = 1 and ∀x ∈ K , fn(x)→ f (x).

• In Lp: (∫ 1

0
|fn(x)− f (x)|p dµ(x)

)1/p

→ 0, p ≥ 1.

• In norm: ‖fn − f ‖ → 0.

In a probability theory, these different modes of convergence get physical in-
terpretations.

Example 17. Consider the branching process. If each individual family has
on average µ children, then the average population size is E[Zn] = µn.
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• If µ < 1, then η = P[Zn → 0] = 1, that is, almost surely the population
size goes to 0: this population dies out. Also on average, E[Zn] = µn→ 0.

• If µ = 1, while the individual family size remains random (σ2 > 0), then
η = P[Zn → 0] = 1, that is, almost surely the population size goes to 0,
while the average E[Zn] = µn→ 1. This is counter-intuitive.

• If µ > 1, then E[Zn] = µn→∞. The probability of extinction η = P[Zn→
0] < 1, so that the sample space Ω splits into three sets: Ω = Ω1 ∪Ω2 ∪
Ω3. Here P[Ω1] = η, P[Ω2] = 1 − η, P[Ω3] = 0 and Zn(ω) → 0 for all
ω ∈Ω1 and Zn(ω)→∞ for all ω ∈Ω2.

Definition 37 (Forms of Convergence). Let X1,X2, . . . be random vari-
ables defined on some probability space (Ω,F ,P).

• Almost sure convergence: We say Xn
a.s.→ X iff

P [{ω ∈Ω | Xn(ω)→ X(ω) as n→∞}] = 1.

• Convergence in probability: We say Xn
P→ X iff

∀ε > 0, P[{ω ∈Ω : |Xn(ω)−X(ω)| > ε}]→ 0 as n→∞.

• Convergence in rth mean: We say Xn
r→ X iff

E[|Xn|r ] <∞, ∀n and E[|Xn −X |r ]→ 0 as n→∞.

If r = 1, this is simply called convergence in mean, and if r = 2, this
is called convergence in quadratic mean.

• Convergence in distribution: We say Xn
D→ X iff

FXn(x)→ FX(x) as n→∞,

for all real x at which FX is continuous. except for any discontinu-
ous points of FX(·).

Let Lr denote the space of all RVs on (Ω,F ,P) with finite rth moment; that is,

Lr B {Y : Ω→ R such that E[|Y |r ] <∞}.

Then E[|Xn|r ] <∞ is equivalent to Xn ∈ Lr . Also

• (E[|Xn|r ])1/r =
(∫
|x|r dFXn(x)

)1/r
= ‖Xn‖r is a norm for r ≥ 1.
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• d(X,Y ) = (E[|X −Y |r ])1/r = ‖X −Y ‖r is a metric on Lr .

Thus for r ≥ 1,

{convergence in rth mean} ⇐⇒ {Lr convergence} ⇐⇒ {convergence in Lr norm}.

Now we introduce the idea of mutual convergence. We use this when we have
to prove convergence but do not have a good candidate for the limitX. Mutual
convergence requires only information on pairs (Xn,Xm).

Proposition 44 (Mutual Convergence). (a) Xn → X a.s. iff P[{ω ∈ Ω :
Xn(ω)−Xm(ω)→ 0 as n,m→∞}] = 1.

(b) For r ≥ 1, Xn
r→ X iff E[|Xn|r ] <∞ for all n and E[|Xn −Xm|r ]→ 0 when

n,m→∞.

(c) Xn
P→ X iff ∀ε > 0, P[{ω ∈Ω : |Xn(ω)−Xm(ω)| > ε]→ 0 as n,m→∞.

Proof. (a) This is trivial: we apply Cauchy’s criterion for each real sequence
{Xn(ω)}.

(b) This asserts that the space Lr is complete in the Lr−norm. This is a well
known fact; such spaces are called Banach spaces.

(c) Not trivial.

5.2 Borel-Cantelli Lemma

The Borel-Cantelli Lemma is the major tool for proving almost sure conver-
gence. Recall the idea of the limit superior: Let A1,A2, . . . be an infinite se-
quence of events on our probability space (Ω,F ,P). If we conduct an experi-
ment (i.e. picking some ω in Ω), how many of the events Ak ’s occurred? More
precisely, does ω ∈ Ak for finite or infinite number of events Ak?

Let Bn =
⋃∞
k=nAk . The sequence Bn is decreasing:

Bn ⊃ Bn+1 ⊃ Bn+2 ⊃ · · ·

Because decreasing sequences always have limits, we define

A∞ B lim
n→∞

Bn =
∞⋂
n=1

Bn =
⋂
n=1

∞⋃
k=n

Ak = limsup
n

An.

Proposition 45. ω ∈ A∞ iff ω ∈ An for infintitely many values of n.
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We interpret this as A∞ = limsupnAn = {An i.o.}, that is, ω ∈ A∞ iff ω ∈ Ak
for infinitely many Ak ’s. This means that there exists an infinite subsequence
k1, k2, . . . such that ω ∈ Akm for all m = 1,2, . . . .

Proof. • ω ∈ A∞ implies ω ∈ Bn =
⋃∞
k=nAk for all n ≥ 1. Thus, for each

n, there exists k ≥ n such that ω ∈ Ak . We conclude that ω ∈ Ak for
infinitely many k’s.

• ω < A∞ implies that there exists n such that ω < Bn for this particular
n. Thus, ω < Ak , for all k ≥ n, i.e., ω can only be in {A1, . . . ,An−1} or in a
subset of these (finite number of Ak ’s).

Proposition 46 (Borel-Cantelli Lemma, Part 1). If
∑∞
n=1P[An] < ∞, then

P[An i.o.] = P[A∞] = 0.

Proof. The decreasing sequence of events {Bn =
⋃∞
k=nAk} ↓ A∞. Thus

0 ≤ P[A∞] ≤ P

 ∞⋃
k=n

Ak

 ≤ ∞∑
k=n

P[Ak]
n→∞→ 0,

because it is the remainder of a convergent series.

This is usually used to prove almost sure convergence of a sequence.

Example 18. We want to prove that Xn→ X almost surely. We choose {ak} ↓ 0
and define events Ak = {ω : |Xk(ω)−X(ω)| ≥ ak}. Assume that {ak} is chosen so
that

∑∞
k=1P[Ak] < ∞ (*). By Borel-Cantelli, P[Ak i.o.] = 0; that is, the proba-

bility of its complement is 1:

P[{Ak i.o.c}] = P[{Ak happens for finitely many of k’s}] = 1.

Because a finite number of indices k has a finite maximum, say n0, we con-
clude that with probability 1 Ak does not happen for k > n0. That is, w.p.1 for
k > n0 we have

Ack = {ω : |Xk(ω)−X(ω)| < ak}.

Because {ak} ↓ 0 this means that w.p.1, |Xk(ω)−X(ω)| ↓ 0.
Another way to see this is because {Ak i.o.} = A∞, then {Ak i.o. }c = (A∞)c =⋃

n=1
⋂∞
k=nA

c
k . We now have

P[{Ak i.o.}c] = P[{ω : ∃n0 s.t. ∀k ≥ n0, ω ∈ Ack}] = P[{ω : |Xk(ω)−X(ω) < ak}] = 1.

The key to proving this is to show (*) for a particular sequence {ak} ↓ 0. The
Markov inequality often helps:

P[|Xk −X | ≥ ak] = P[|Xk −X |p ≥ a
p
k ] ≤ E[|Xk −X |p]/apk , for p ≥ 1.
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Proposition 47. If Xn
P→ X, then there exists a non-random sequence

{n1,n2, . . . ,nk , . . . } ↑ ∞ such that Xnk → X a.s. as k→∞.

Proof. Suppose Xn
P→ X. Fix an integer k > 0 and choose ε = 1/k. By definition

of convergence in probability, for this ε, this holds:

P[{ω : |Xn(ω)−X(ω)| > 1/k}]→ 0 as n→∞.

Thus there exists nk such that P[{ω : |Xnk (ω)−X(ω)| > 1/k}] ≤ 1/k2. We denote

Ak = {ω : |Xnk (ω)−X(ω)| > 1/k},

and so P[Ak] ≤ 1/k2. By Borel-Cantelli, we can show that Xnk → X a.s. as
k→∞,

∞∑
k=1

P[Ak] ≤
∞∑
k=1

1
k2 <∞

implies that P[Ak i.o.] = P[{ω : |Xn(ω) − X(ω)| > 1/ki.o.}] = 0, that is, with
probability 1 events Ak happen only for a finite number of k’s and there exists
n0 such that Ack = {ω : |Xnk (ω)−X(ω)| ≤ 1/k} happens for all k ≥ n0 w.p.1. Thus
we conclude that w.p.1, Xnk → X as k→∞.

Later we apply this to the SLLN. The converse of the Borel-Cantelli Lemma
fails without additional assumptions.

Example 19. Take Ω = [0,1], F = B, and P is the Lebesgue measure. Consider
a sequence an ↓ 0 such that an ≥ 1/n (for example, an = 1/n). Now let An =
(0, an). Then P[An] = an and

∑∞
n=1P[An] ≥

∑∞
n=1

1
n =∞. We then calculate

P[A∞] : Bn =
∞⋃
k=n

Ak =
∞⋃
k=n

(0, ak) = (0, an),

because (0, ak) is decreasing: (0, ak) ⊃ (0, ak+1) ⊃ · · · . Thus

A∞ =
∞⋂
n=1

(0, an) = ∅ =⇒ P[A∞] = 0.

This gives us an example of P[A∞] = 0 but
∑∞
n=1P[An] =∞. Why is this true?

This is because An ⊃ An+1, or in other words, P[An | An+1] = 1. The events are
dependent.

Proposition 48 (Borel-Cantelli Lemma, Part 2). If the events An are indepen-
dent, then

∑∞
n=1P[An] =∞ implies P[An i.o.] = P[A∞] = 1.

(Note: As it turns out, it is sufficient for An to be pairwise independent.)
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Proof. • To show P[An i.o.] = P[
⋂
n=1Bn] = 1 is equivalent to showing that

P[
⋃
n=1B

c
n] = 1−P[

⋂
n=1Bn] = 0. But 0 ≤ P[

⋃
n=1B

c
n] ≤

∑∞
n=1P[Bcn]. If we

show that P[Bcn] = 0 for all n, then
∑∞
n=1P[Bcn] = 0 and P[

⋃
n=1B

c
n] = 0 iff

P[{An i.o.}] = 1.

• To conclude, we must show that P[BcN ] = 0 and P[
⋃
n=1B

c
n] = 0 iffP[An i.o.] =

1. Take N > n. We consider

P

 N⋂
k=n

Ack

 =
N∏
k=n

P[Ack] =
N∏
k=n

(1−P[Ak]).


