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Introduction

An option is a financial contract that allows one to either buy or sell (buy for call,
sell for put) a certain quantity of an asset at an agreed exercise price K, called the
strike and an agreed time T , called the maturity date. If the buyer of the option
exercises their right granted by the option, then the writer has the obligation to
purchase or sell the asset at the strike. In exchange for being given this right,
the buyer of the option must pay a fee x, called the premium. Seeing how the
premium of an option changes with respect to certain parameters, such as the
stock price or volatility, is of particular importance to practitioners of the financial
industry, as one can then gauge the feasibility and fairness of an option.

Greeks and Types of Options

The most simple type of option are the class of European options, which only
allow the buyer of the option to exercise at the established time T . We denote
by St the observed price of our asset at time 0 ≤ t ≤ T , and by VT the option
price. The value of a European call and put option at maturity are (ST −K)+ =
max(0, ST−K), and (K−ST )

+ = max(0, K−ST ) respectively. Often, these option
contracts are settled with cash instead of physical delivery at maturity, meaning
that in general we only need to specify a payoff function ϕ(ST ), that specifies the
amount of money the writer owes the holder at T . As above, the payoff function
of a European call will be

ϕ(ST ) = (ST −K)+.

This payoff structure is called vanilla because it is not complicated. More gener-
ally, ϕ can be any function that can be explicitly computed on day T . In mathe-
matical finance, we often want to estimate V0 = EQ[ϕ]. The problem is that as
market conditions evolve, such as St, the current price of the asset at time t, r,
the interest rate, and σ, the volatility. These factors will change V0; this estimate is
"sensitive" to these certain parameters. The sensitivities of V0 we call the Greeks.

Name Sensitivity Formula
Delta (∆) Price (S) ∂V/∂S
Vega (V) Volatility (σ) ∂V/∂σ
Theta (Θ) Time (τ ) −∂V/∂τ
Rho (ρ) Interest Rate (r) ∂V/∂r

Gamma (Γ) Delta (∆) ∂∆/∂S

The next type of options are the Asian options. These options are apart of the
class of "path-dependent" options, meaning that the payoff depends on the move-
ment of the stock itself. Here we choose to take the average continuously, so that
the parameters we input into our payoff function will be

ϕ(S̄T ) = ϕ

(∫ T

0
St dt

)
.

This means we can write the value of an Asian call and put at time T as ( 1T S̄T −
K)+ and (K − 1

T S̄T )
+ respectively.

A binary or digital option is an exotic option in which the payoff is either some
fixed amount or nothing at all if a criterion is met. In essence, these are a specific
case of a larger set of payoff functions, as their payoff functions are dependent
on the structure of ST . This means that we can have European digital options or
Asian digital options, for example. These have mathematical formulation

ϕ(ST ) = 1{ST>K}; ϕ(S̄T ) = 1{S̄T>K}.
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Methods

There are already many methods for numerically approximating the Greeks: the finite dif-
ference method, the likelihood method, and the pathwise derivative method. [1] introduces
a way to use Malliavin calculus, the "stochastic calculus of variations" developed by Paul
Malliavin in the late 1970s. The beauty of Malliavin calculus is that is gives us a way to use
integration by parts in the world of stochastic processes, which are by construction non-
differentiable.
How do we rigorously define the derivative operator DF? We must have a square integrable
random variable F : Ω → R, where the derivative is taken w.r.t. the parameter ω ∈ Ω.

Definition 1 (Malliavin Derivative). Consider the set of smooth random variables S:

S = {F = f (W (h1), . . . ,W (hn)), f ∈ C∞p (Rn), hi ∈ H, n ≥ 1},

where C∞p (Rn) is the set of functions f : Rn → R that are C∞ and such that f and all
its partial derivatives have polynomial growth. If F ∈ S, we define the derivative of F ,
denoted DF , as the H−valued random variable:

DF =

n∑
i=1

∂if (W (h1), . . . ,W (hn))hi.

We denote the domain of D in Lp(Ω) by the Sobolev space D1,p for any p ≥ 1, which means
that D1,p is the closure of S w.r.t. the norm

∥F∥1,p = (E[|F |p] + E[∥DF∥pH])1/p.

We can interpret D1,p as an infinite dimensional weighted Sobolev space, and for p = 2, we
have a Hilbert space with scalar product

⟨F,G⟩1,2 = E[FG] + E[⟨DF,DG⟩H].

The adjoint of the Malliavin derivative gives us an analogous integral operator:

Definition 2 (Skorokhod Integral). Let δ be an unbounded operator on L2(Ω;H) with val-
ues in L2(Ω) such that the domain of δ, Dom(δ), is the set of H−valued square integrable
random variables u ∈ L2(Ω;H) satisfying

|E[⟨DF, u⟩H]| = E
[∫ ∞

0
DtFu(t) dt

]
≤ K(u)∥F∥2,

for all F ∈ D1,2, where K(u) is some constant depending on u but independent of F . If
u belongs to Dom(δ), then the Skorokhod integral operator δ(u) is defined as the element
of L2(Ω) characterized by

E[Fδ(u)] = E[⟨DF, u⟩H], ∀F ∈ D1,2.

The elements of Dom(δ) ⊂ L2([0, T ]× Ω) are square integrable processes, and

δ(u) =

∫ T

0
u(t)δWt,

which is known as the Skorokhod integral of the process u.

Theorem 1 (Integration by Parts). Let F,G be two random variables such that F ∈ D1,2.
Let u be an H−valued random variable such that ⟨DF, u⟩H ̸= 0 almost surely and
Gu(⟨DF, u⟩H)−1 ∈ Dom δ. Then for any function f ∈ C1 with bounded derivatives, we
have that

E[f ′(F )G] = E[f (F )H(F,G)],

where H(F,G) = δ(G(⟨DF, u⟩H)−1.

For this project, we extend the work of [1]. In particular, we use the Integration by Parts
formula to develop the following forms for Γ and V of an Asian option with continuous aver-
aging:

Γ0 =
4e−rT

σ3S2
0

E

[
ϕ(S̄T )

(
(ST − S0)

2 − (ST − S0)rS̄T
σS̄2

T

− σS0
S̄T

)]
− 2r

σ2S0
∆.

V0 = e−rTE

[
ϕ(S̄T )

(∫ T
0

(∫ T
0 StWt dt

)
dWs

σ
∫ T
0 tSt dt

+
1

S0

∫ T

0
StWt dt

∫ T
0 t2St dt(∫ T
0 tSt dt

)2 −WT

)]
.

The new form for Γ in terms of ∆ eases computational costs significantly compared to older
models.

Numerical Results

To simulate the Greeks and compare our Malliavin estimator to currently existing
estimators, we assume St follows a Geometric Brownian motion with conditions
S0 = 100, r = 0.05, σ = 0.10, and maturity T = 1, and time discretized to a small
number of paths.

Fig. 1: Comparing errors for various strikes on European and binary options

Fig. 2: Refinement of Malliavin and finite difference estimators

Fig. 3: Comparison of errors for Malliavin and pathwise derivative estimators

The following can be concluded:

• The Malliavin estimator is more accurate than the finite difference estimator
by at least one order of magnitude.

• The Malliavin estimator is better than the pathwise derivative estimator be-
cause the latter cannot be used to compute nonvanilla options or greeks
involving the second derivative.

• The pathwise derivative estimator slightly outperforms the Malliavin estima-
tors when it is applicable.

Future Work: Deep Learning

Another approach to the numerical estimation problem is one involving that of
deep learning.


